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Advancing Sampling Techniques: Multivariate Ratio Estimation for Variance Vector in Two-Phase Sampling 
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Abstract 

The problem of variance vector estimation using multi-auxiliary variables is not quite often considered in the literature. In the 

present study, we propose a multivariate ratio estimation approach for estimating a vector of variances in two-phase sampling 

using a vector of l  variables, following the situation if the desired parameters are available only for some of the auxiliary 

variables.  Some special cases of the proposed generalized multivariate variance estimator have also been discussed. Expressions 

of the bias, and generalized variance has been derived. With the help of real-life data, the applicability of the proposed 

multivariate variance estimator has been given, and it is shown that the proposed multivariate estimator is more efficient than 

the modified versions of multivariate variance estimators. A simulation study has also been carried out to show that the proposed 

estimator surpasses the modified version of multivariate estimators. 
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1. Introduction 

We ruminate a finite population  1 2, ,..... .N =       Let 
jY  be the variable under study where 1, 2, ...,j m=  and 

jX  be the auxiliary variable where 1, 2, ..., .k l=  Let 
jY  and kX  be the population means and 

2

jyS  and 
2

kxS  be the 

population variances of the study and auxiliary variable respectively. Further, let 
2

kxC , 
2

jyC be the coefficients of disparity and 

j ky x indicates the correlation coefficient between study and ancillary variables. We are considering two-phase sampling design; 

where the first-phase sample of size 1n  is particular from the population N units and the second-phase sample of 2n units are 

selected from 1 2 1( )n n n . Now an assumption is made that only 1l auxiliary variables are available with their known 

population means and variances while 2l  represents the unknown auxiliary information. 

Let 
(2) (2) (2) (2) (1)

2 2 2 2

(1)(1 ), (1 )and (1 )
j j j k k k ky y y x x x k k xs S s S x X e = + = + = +  defined the relative errors and 

( 2) ( 2) (1)
, and

j k ky x xe    be the sampling errors. To understand the properties of an estimator, some necessary expectations are 

shown by, 

( )( ) ( )( )
1 2

0,
k kx xE E = =  

( )( )
2

0
jyE  = , 

( )( ) ( )( )
1 2

0
k kx xE e E e= =  , ( )   ( )  

(2) (2)

2 2

2 2 2 2 2 2 2 2A ( ) 1 , A ( ) 1 ,
j ky y x xE y E x       = = − = = −  

( )  
( )( )(2) (1) (1) 21 1 220 1 1 1 2102A 1 , A ,

k d ky x yx x y yx xEE E e C        = = − = =  

( ) ( )
(1) (2) (1) (1)1

2 2 2 2

1 1 1 1 1 1 1 1 1A , A ( , )
k d k k d k k h dk h k h k hx x x x x x x x x x x x x xE e C E e C E e e A C C      = = = = = =  

where  k h  

where 1E  and 2E  denotes the potentials over first and second phase and 2 2( ), ( )y x  are Kurtosis of the study and 

auxiliary variable respectively. 
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We use the following results using simple random sampling without replacement (SRSWOR) for the derivation of bias 

and variance-covariance (Var-Cov) matrices under two-phase sampling in multivariate situations,
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( ) ( )

( 2)1 ( 2) 2 ( 2) m

(1)1 (1) 2 (1) 1 1 ( 2)1 ( 2) 2 ( 2) 2

(1)1 (1) 2 x(1) 1 ( 2)1 ( 2) 2 x( 2) 21

( ) (m )1 1
1 2 1 1 1 2 1 2 1 2 1
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. . ,

. . , . . ,

e e . . e , e e . . e ,
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x x x x x x x x
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  =
 

    =  =
   

   = =
  

   =    =  ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( )

( )1

( ) (m ) ( )1 1 1 1

1 1 1 ( ) 1 1 1 ( )2 2 2 2

1 1 ( )2

1 ,

1 2 1 1 1 2 1 1 1 2 1 1

1 2 1 2 1 1 2 1 2 1

1 2 1 1

1 2

1 2

, ,

, ,

and

1 1
and , represents t

l m

d l d l d l m

d l l l l

l m

y xy

x x x y x yx x y x y

x x x x x x

x y x y

E E D D E E D E E D

E E D D E E
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 = 

  =   =   = 

 = −    = − 

  = 

= =  he variance-covariance matrix.

 
Ahmed (2000) proposed the two estimators for assessing finite population variance using multivariate assisting variables when 

assisting variables are known and found that their estimators are more efficient than Isaki (1983). Abu-Dayyehand Ahmed (2002) 

proposed the ratio and regression estimators when assisting variables are not known for the population but known for the large 

samples with moderate cost. They proposed the variance estimator using two auxiliary variables under two-phase sampling. 

Kadilar and Cingi (2007) also suggested the regression estimator using an auxiliary variable and exposed that their estimator is 

more efficient than Isaki’s (1983) ratio and regression estimator under assured situations. There are some other vital studies in 

the fiction such as Kim and Sitter (2003) Singh et al. (2003), Singh et al. (2010), Singh and Solanki (2013), Olufadi and kadilar 

(2014), Asghar et al. (2014), Singh and Singh (2015), Yadav et al. (2015), Singh and Pal (2016),Sanaullah et al. (2016), and 

recently Ismail et al. (2018), Abid et al. (2019), Naz et al. (2020), Zaman et al. (2021), Daraz et al. (2021) and Niaz et al. (2022) 

developed the ratio estimators for estimating population variance. Further, Cekim and Kadilar (2020) proposed the ln-type 

regression estimators for variance estimation under SRS and Haq et al. (2021) worked on the variance estimators under stratified 

sampling.   

In this paper, we have considered the multivariate situation when some of the assisting variables are known, and the others are 

unknown, and we have adopted the two-phase sampling for estimating population variance. The goal of this study is to show 

how we can deal with the multiple situations using known and unknown auxiliary variables for estimating the variance vector. 

The arrangement of the paper is as follows, in Section 2, we modify some existing estimators into multivariate cases and find 

their Var-Cov matrices. The bias and Var-Cov matrix of multivariate ratio type estimator is given in Section 3. A real-life 

example has been taken to exhibit the routine of our suggested estimator in Section 4. Section 5 is based on the simulation studies 

and lastly, conclusions are presented in Section 6. 

 

2. Modify form of some existing estimators 

An unbiased estimator of population variance is sample variance i.e., 
2

0 ,yt s=  We modify it in multivariate case using multi-

auxiliary variables as 0 0 1 0 2 0 0d d d dj dmt t t t t =   , 

(2)

2

0        1,2,... ,, ,
jdj yt s j m= =  (1) 

and variance of unbiased estimator is ( )0Var t , 

Isaki (1983) suggested ratio estimator for estimating population variance is .rt  

Modify it in multivariate form as 1 2r r r rj rmt t t t t =   , 

1 1 2

(1) (1)

(2)

1(1) (2)

2 2

2

2 2
1 1

j 1,2,...,m ,  k  1,2,...., l,,
k k

j

k k

l l l l
x x

rj y

k k lx x

S s
t s

s s

+ =

= = +

   
   =
  

=



=


  
   (2) 

and its Var-Cov matrix is given, 
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(m ) (m ) (m ) (m ) ( ) ( )1 1 1 1

(m ) 1( ) ( )2 2 2 2

(m )

(m ) (m ) ( )1 1

(m ) 1(m ) ( )2 2

2 1

2 1

1

1 2

( )
.

2 ( )

2( )( )

m m m l l l l m

l l l l m

m

m l l m

m l l m

y x

x

tr

yx

yx

I I I I

I I
S S

I I

I I

     

  



  

  

  +  
 

+ −  
 =  

−  
  − − 
 

 

 



 

 (3) 

Upadhaya and Singh (1999) anticipated the following ratio estimator and we modify it in multivariate case, 

1 2u u u uj umt t t t t =    

1 1 2
(1)k (1)k

j(2)

1(1)k (2)k

2

1 1

, 1,2,...,m, 1,2,...., ,
l l l l

x

uj y
k k lx x

X

t s j k l
+ =

= = +

   
   

= = =
   
   
   

   (4) 

and its Var-Cov matrix is given,

 

(m ) (m ) (m ) (m ) ( ) ( ) (m ) 1( ) ( )1 1 1 1 2 2 2 2

(m )

(m ) (m ) ( ) (m ) 1(m ) ( )1 1 2 2

2 1 2 1

1 1 2

( )
,

2 ( ) 2( )( )

m m m l d l l l m l d l l l m

m

m d l l m m d l l m

y x x

tu

yx yx

I S I I I I
S S

I I I I

   

  

        



     

   +  + −  
   =
  −  − − 
 

 (5) 

where I  represents the identity matrix. 

Das and Tripathi (1978) proposed the following ratio estimators using single auxiliary variable as, 

0

2

1

1

D y

X
t s

x


 

=  
 

,

1

1

2
2

2 2

x
D y

x

S
t s

s


 

=  
 
 

, 
2

3
2 1

.
( )

D y
X

t s
X x X

 
=  

+  −   

We derived ratio type multivariate estimator following Das and Tripathi (1978) 1Dt , 

1 2 ( )d d d dj d dmt t t t t =  

 

1 2

1 1 2
(1)k (1)k

j(2)

1(1)k (2)k

2

1 1

.
l l l l

x

dj y
k k lx x

X

t s

 
+ =

= = +

   
   

=
   
   
   

   (6) 

Its Var-Covmatrix is given, 

( )

(m ) (m ) ( )1 ( ) 11 1

(m )

1(m ) 1 ( )2 1( ) 22 2

1

2 1

1

2 1

,
m d l v d l ml l

m

d l x d l md l l

y yx x y

td

yx x y

S S
 

 

  



 

−

−

  −   
  =
 − −   
 

 (7) 

where 0   is used for minimizing. 

 

3. Proposed estimator for Variance Estimation 

Adapting the estimator of Das and Tripathi (1978), given in Section (1), we develop the following variance estimator for 

estimating the finite population variance in the multivariate case using multi-auxiliary variables, 

( )1
,p pj xm

t t =    

where 
*

1 1 2

j(2)

1

2 2

(1)k2

2 2 2 2
1 1(1)k (2)k (1)k

,
(1 ) (1 )

kj kj

k

k

g g
l l l l

x x

pj y

k k lkj x kj x kj x kj x

S s
t s

s S s s

+ =

= = +

    
 =    
 + − + −      

 
   

 

(8) 

and and *kj kjg g  be the known constants which may takes the values ( 1,0,1)−  to attain global product-type, unbiased 

variance and ratio-type estimators respectively, kj   and kj are anonymous constants; estimated by minimizing the asymptotic 

Var-Cov matrix of the estimator. Up to first order of approximation, (8) may be written as in i s  , 
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*

1 1 2

k(1)

j(2)

1k(1) k(1) k(1)k(2)

2

1 1

(1 )1
(1 ) ,

(1 ) 1 ( )

kj kj

j

x

gg
l l l l

x

pj y y

k k lkj x x kj x

t S
+ =

= = +

    +  = +   + + + −       

 



     

 

(9) 

or 

 ( )

1

k(1)

*j( 2)
1 2

k(1) k(1) k( 2) k(1)

1

1

12

1

1

(1 )

(1 ) .

(1 ) 1 ( )

kj

x

j
kj

gl

kj

k

pj y y gl l l

x x kj x x

k l

t S

 



    

−

=

+ = −

= +

 
  +
  

= +  
  

+ + + −    





 

Ignoring the higher order terms and expanding up to first order estimation, we have 

 ( )

1

k(1)

j( 2)
1 2

k(1) k(1) k( 2) k(1)

1

12

*

1

(1 )

(1 ) ,

(1 ) 1 ( )

j

kj

l

kj kj

k

pj y y
l l l

kj

k l

g

t S

g

=

+ =

= +

 
 −  

 
= +

 
  + − + −    





 



    

 
(10) 

or 

( )
1 1 2

j(2) k(1) k(1) k(2)

1

2 *

1 1

(1 ) 1 .
j kj

l l l l

pj y y kj kj kj

k k l

t S g g     
+ =

= = +

 
= + − + − 

 
   

After some simplifications, we may get, 

( )
1 1 2

j(2) k(1) k(2) k(1)

1

2 *

1 1

1 .
j kj

l l l l

pj y y kj kj kj

k k l

t S g g     
+ =

= = +

 
= + − − − 

 
 

   (11) 

On simplification, we may have, 

1 1 1

j(2) k(1) k(1) k(1)

1 2 1 2

k(2) k(1) k(2) k(1)

1 1

1 2

k(1)k(2)

1

2 2 2 2 2

1 1 1

2 *2 2 2 *

1 1

* 2 2 *

1

1

( ) ( )

( )

j kj

kj kj

l l l

y kj kj x kj kj x kj kj x

k k k

l l l l l l

pj y kj kj x x kj x x

k l k l

l l l

kj x x

k l

g g g

t S g g

g g

      

     

   

= = =

+ = + =

= + = +

+ =

= +

+ − + +

= + − − −

+ − +

  

 


1 2

k(1)k(1) k(2)

1 1

.

( )
l l l

kj x x x

k l

  
+ =

= +

 
 
 
 
 
 
 
 −
 
 



 
(12) 

Subtracting 
2

jyS  from (12) and taking expectation we have, 

( )

1 1

j( 2) j( 2) k(1) k(1)

1 2 1

k(1) k( 2) k(1)k(1)

1

1 2 1

k( 2) k(1)k(1)

1

1 1

* 2 2

1 1

*2 2 2 2 2 2

1 1
2 2

1 2 1 1 2 1

( )

( )

kj

j j

l l

y kj kj y x kj kj x

k k

l l l l

kj x x x kj kj x

k l k

l l l l

kj kj x x kj kj x

k l k

pj y y

g g

g g

g g

E E t S S E E

     

     

    

= =

+ =

= + =

+ =

= + =

− −

+ − +

+ − +

− =

+

 

 

 

1 2

k( 2) k(1)

1

1 2

k(1)k( 2)

1

1 2

j( 2) k(1)k( 2)

1

* 2 2

1

*

1

*

1

.

( )

( )

( )

kj

kj

kj

l l l

kj x x

k l

l l l

kj x x

k l

l l l
kj y x x

k l

g

g

g

  

  

   

+ =

= +

+ =

= +

+ =

= +

 
 
 
 
 
 
 
 
 
 
 −
 
 
 
− − 
 
 −
 +
 
 







 

(13) 

Since for bias (13) may be extended up to order more than one, 
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1

k(1) k(1)

*

j( 2)
1 2 k(1) k( 2) k(1)

k(1)

1

k(1) k( 2) k(1)

2 2

1

2

2

1

(1 )

(1 ) .
1 ( )

(1 )

( )

kj

kj

j

gl

kj x kj x

k

g

pj y y
l l l x kj x x

x

k l
x kj x x

t S

   


   


   

=

+ =

= +

 
  − +
  

 
= +    − + −

   
+   

+ + −   
   





 
(14) 

After some simplification, the bias of our proposed estimator is,  

( )
( )

( ) ( ) ( ) ( )

( )
( )

( )
( )

( )

( )
( ) ( )

( )
( )

( )

1 11 11 1

1 1
1

1 1 21
2

1 1 2
2

1 1 2
2

2 2 2
1 1

1

2 *
2 1

* 2
2 1

*2 2
2 1

l l

l
l m

kjl
m l m

kjl

l
l m

x kj kj x kj kj
l m l m

yx kj kj

p y yx kj

yx kj
l m

yx kj kj

A g A g

A g

Bias t S A g

A g

A g

 





 






 



 
      +  
    

  −   
 

  = +  −  
  

 
 +  −   
 

  −  −    
 

.





 

(15)

 

Using (15), we may proceed for Var-Covmatrix, 

( )( ) ( )( )

( ) ( )( ) ( ) ( )( )

(1 ) (1 )1 1(m )

(1 ) (1 ) (n ) (1 ) (1 ) (l )1 1 1 12 21 1 1 12 2

1 2 1

4

1 2 1

S S

,

p m p mm mp m

m n m m l mn l

t

y y x x y x xn m l m

E E

S E E    

  

       


= − −


=  − +   − + 

 t t

 
(16) 

where 
( ) ( )1 21 2( ) ( )

and
l m l mkj kj kj kjl m l m

g g
  

   = =      
, the matrix of regression coefficients and usually these coefficients 

are unknown, and their estimated values are used to minimize the Var-Cov  matrix of multivariate ratio type estimator. 

Using the results of expectations (11), (16) may be written as: 

( ) ( )

( ) ( )

( )
( )

(m ) 1 ( m) 111 1 1

(m ) 2 1( ) 1( ) 22 2

2 1 2 ( ) 12 2 1

2 1 (m ) 1 (m )

1 2 ( ) 1 2 ( )

2 1 ( ) ( ) 1 ( )

.

m ll l l m

p m m l m l

m l l l m l

y l x l yx

t l m yx yx l m

x l m yx l m

S S

  

  

  

 

 

 

   +  − 
 
   = + −  + − 
 
 + −  − 
 

     

     

     

 (17) 

We distinguish the above appearance with respect to and  and get the optimal values as: 

( ) ( ) ( ) ( ) 1 ( ) 1 ( )1 1 1 1 2 2 2 2

1 1and .
l m l l l m l m l l l mopt x yx opt x yx 
     

− −=   =  
,      

By means of the optimum value of and   in (17) and we may get the minimum value of Var-Cov matrix of p
t

, 

( ) ( )

( )
( ) ( )

(m ) (m )1 1 1 1

(m )

1 (m ) 1 12 2 2 2

1

2 1

min 1

2 1

.
m l l l l m

p m

l l l l m

y yx x yx

t

yx x yx

S S
   



  

−

−

  −   
  =
 − −   
 

 

 
 (18) 

Remark 1: 

By putting * 0kjg =  and 0kjg =  directly in (8), we may get the multivariate ratio type estimator for full and no information cases. 

Similarly, we may also get the bias and Var-Cov matrices for full and no information from (15) and (18) respectively. 

Remark 2: 

One may get a univariate estimator based on different auxiliary variables from (8) taking 1 and 1,2,3 ,j k l= =  as: 
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(1 1)
,pu pujt t


 =  

 
*

1 1 2

1( 2)

1

2 2

(1)k2

2 2 2 2
1 1(1)k (2)k (1)k

,
(1 ) (1 )

k
k

k

k

g g
l l l l

x x

pj y

k k lk x k x k x k x

S s
t s

s S s s

+ =

= = +

    
 =    
 + − + −      

 
   

 

and the Var-Cov matrix for the estimator in (17) may be acquired as: 

( )
( )

( )

( ) ( )
( )

(1 1) 1 1 2 1 21 1 2 2

(1 1)

( ) 1 2 1 ( ) 1 ( ) 2 1 11 1 2 1 2 11

2 1 (1 ) ( 1) 2 1 (1 ) ( 1)

1 ( 1) 1 2 ( 1) 1 2 ( 1) 1 (1 )

.
l l l l

p

ll l l

y l x l l x l

t

yx l l yx yx l l yx

S S
  



  

   

   

   +  + − 
  =
  −  + −  + −  − 
 

       

         
 

Special cases: 

For some specific 
*, ,gandg   the estimator in (9) provides some existing estimators in the following table, 

Value of 
*, ,gandg 
 

Estimators 

*1, 1&g 0g= = =
 

( 2)

2
2

2

x
R y

x

S
t s

s
=

      (Ratio estimator) 
*1, 1&g 0g= = − =

 
(2)

2
2

2

x
pr y

x

s
t s

S
=

      (Product estimator) 
*1, &g 0optg= =

 
( 2)

2
2

2

g

x
R y

x

S
t s

s

 
=  

  (Das and Tripathi (1978)) 

 

4. A Real-Life Application-Based Results and Discussion 

To show the implementation of the MRCE estimator, the Canadian climate data is used as a real-life application, which is 

published by the National Oceanic and Atmospheric Administration (NOAA). The weather data considered for this study, is 

only for the month of May 2017 that are recorded on daily basis, for 37247 different weather Stations of Canada, and then the 

data is converted into per week information taking week as Week-1 (average temp. for May, 2017), Week-2 (average temp. for 

May, 2017), Week-3 (average temp. for May, 2017), Week-4 (average temp. for May, 2017). There were many stations where 

the required data is not recorded for full week, so such Stations are dropped, and only those weeks where the data is recorded for 

full week. The monthly average temperature data recorded in the last four years say, 2017, 2016, 2015, & 2013, are considered 

as the auxiliary variables, and for these years, such stations were dropped where temperature record is not present for full week. 

Finally, only 704 Stations which had the data regarding temperature for full week, are left. For this purpose, the tidyverse Package 

(2016) is used to detect, and eliminate missing values, and to transform other variables mutate some more functions. 

Temperature averages (TAVGs) for the three weeks of May, 2017 are treated as the study variable 
iY , where i=1, 2, 3, and in 

the previous three years (2016, 2015 and 2013) monthly TAVGs are taken as the auxiliary variables 
iX , where i=1, 2, 3. 

A finite population approach is used to model the variance and covariance of weekly temperature across Canada using the data 

published by National Oceanic and Atmospheric Administration (NOAA), and description over the population characteristics is 

presented in table (A), covariance matrix is presented in table (B) and table (C) is for correlation matrix among variables in 

appendix. Now, from the given population of size 704N = , a first-phase sample of size 1 211n = is selected, and necessary 

calculations are made based on the first-phase sample. Using SRSWOR, another sample i.e., second-phase sample of size  

2 105n =  is selected from the already selected first-phase sample. Some necessary calculations based on second-phase sample 

are also computed. The statistics computed based on the first phase, and the second-phase samples, are then incorporated into 

the proposed MV estimator, and the mentioned existing MV estimators for getting estimate about PV. This procedure is repeated 

for 1000 times. Finally, determinants for the Var-Cov matrix of each MV estimator are computed. Var-Cov matrices are 

computed in Table 1 for the proposed estimator, and for the altered existing estimators. The percentage relative efficiencies 

(PRE) of each estimator as compared to the sample variance estimator is presented using the following formula: 

0

*

100
t

t

PRE


= 


. 

We ruminate four study variables denoted by Y’s and four auxiliary variables denoted by Xs for the multivariate situation (where, 

3 4andX X are considered as known auxiliary; 1 2andX X  are considered as unknown auxiliary variables). We also have 

shown our results for univariate situations using the same four X’s as auxiliary variables. We compared our suggested estimator 
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( pt ) with the unbiased estimator ( 0t ), the Isaki (1983) estimator ( rt ), Upadhaya and Singh (1999) ratio type estimator ( ut ) 

and Das and Tripathi (1978) ratio type estimator ( dt ).   

 

Table 1: Variance-covariance matrices for our proposed Estimator 

Variance-covariance Matrix of Proposed Estimator 

 1pt

 

2pt

 

3pt

 

4pt  

1pt  0.019369890 4.905212e-03 -0.002014820 -3.803579e-03 

2pt  0.004905212 1.653949e-02 0.001372994 -4.379532e-05 

3pt  -0.002014820 1.372994e-03 0.010945712 5.472590e-03 

4pt  -0.003803579 -4.379532e-05 0.005472590 2.098642e-02 

Variance-covariance Matrix of 0t
Estimator

 

 01t

 

02t  03t  04t  

01t
 

0.07672491 0.05630260 0.04004221 0.03830438 

02t

 

0.05630260 0.06388211 0.03917459 0.03796022 

03t

 

0.04004221 0.03917459 0.04337219 0.03747599 

04t  0.03830438 0.03796022 0.03747599 0.05273034 

Variance-covariance Matrix of dt
Estimator

 

 1dt

 
2dt

 
3dt

 
4dt  

1dt

 

0.05563582 0.03759989

 

0.02706011

 

0.02310313

 

2dt

 

0.03899938 0.04860736 0.02822920

 

0.02613081 

3dt

 

0.02928598 0.02923263 0.03569492 0.03007688 

4dt  0.02455991 0.02634051 0.02936588 0.04341882 

Variance-covariance Matrix of rt Estimator 

 1r
t

 

2rt

 

3rt

 
4r

t  

1r
t

 

0.02253536 -0.003942296 0.04004221 0.03830438 

2rt

 

0.01325979 0.025422865 0.03917459 0.03796022 

3r
t

 

-0.05560742 -0.062276857 0.04337219 0.03747599 

4r
t  -0.05750892 -0.062667890 0.03747599 0.05273034 

Variance-covariance Matrix of ut  Estimator 

 1ut

 
2ut

 
3ut

 
4ut  

1ut

 

0.08124260 0.06187189 0.04004221 0.03830438 

2ut

 

0.05990383 0.06829672 0.03917459 0.03796022 

3ut

 

0.04338338 0.04319781 0.04337219 0.03747599 

4ut  0.04250808 0.04290596 0.03747599 0.05273034 
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Table 1 shows our multivariate cases; Var-Covmatrices have been computed from (2), (4), (6), (8) and (25) to illustrate the 

performance of our multivariate ratio estimator. We get the (4 4) matrix and observed that the diagonal elements of each 

matrix show the variances for 1 4(Y ,..,Y ) . It is also detected that the diagonal elements of our anticipated estimator have the 

lower variances among the other diagonal elements of existing estimators. It is noted that the estimators who are using population 

variance as auxiliary variable are more effective than the estimators having population mean as auxiliary variable. We can also 

see that our proposed and modified Isaki (1983) estimators are having lesser variances on the diagonals than Upadhaya and Singh 

(1999) and Das and Tripathi (1978). 

 

Table 2: Determinant and PRE’s of our proposed and literature estimators 

Estimator pt

 

0t

 

rt

 

dt

 

ut

 
Determinants

 

4.77554e-08 6.22207e-07 3.99522e-07 5.284e-07 5.4245e-06 

PRE’s for Univariate cases using four auxiliary variables

 

 Weekly temperature

 

Estimator Y1 Y2 Y3 Y4 

pt  
396.10400 

 

386.00 

 

396.24822 

 

251.00 

 

rt  
137.90559 

 

131.42477 

 

121.508018 

 

121.44581 

 

dt  
340.46454 

 

251.27817 

 

100 

 

100 

 

ut  
94.43925 

 

93.536135 

 
100 100 

 

Table 2 summaries the results for multivariate as well as for univariate cases. By finding the determinants of the Var-

Covmatrices, we find the MSE of our proposed and literature estimators and it is observed that our anticipated estimator ( pt ) 

has the determinant 4.77554e-08 which is less than the determinant of 0t , rt , dt and ut . We also computed the numerical 

results by finding PRE’s for every Y using the four auxiliary variables. 

 

5. Simulation Study 

The simulation study has also been computed to assess the presentation of our anticipated multivariate ratio type estimator for 

estimating population variance under a two-phase sampling scheme. We used a model for generating the finite populations by 

using the R- Statistical package.  We consider four study variables ( )1 2 3 4, , ,Y Y Y Y  along with four auxiliary variables

( )1 2 3 4, , ,X X X X  for multivariate situation (where, 3 4andX X are considered as known auxiliary; 1 2andX X  are 

considered as unknown auxiliary variables) and normal distribution is used for generating our auxiliary variables 'X s as: 

1 ~ (12,4)X N , 2 ~ (15,3)X N , 3 ~ (18,6)X N , 4 ~ (16,5)X N . 
 

And the study variable is simulated as: 

Model-I 

1

.
l

kj
k

Y X 
=

= +   

We generated a finite population for 10,000N =  and nominated a sample of size 1 2000n =  units by SRSWOR in the first-

phase and then we designated a small sample from 1n  of 2 600n =  units by SRSWOR. This technique is continual q=1000 

times to compute the ideals of our proposed and existing estimators. 

The code for the simulation was carried out using the R statistical package (2016) and the David Robinson (2016) broom and 

Hadley Wickham (2016) Tidy verse packages.  
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Table 3: Variance-covariance matrix for ratio estimator 

Variance-covariance Matrix of Proposed Estimator 

 1pt

 

2pt

 

3pt

 

4pt  

1pt  1.4261477 1.2066771 0.5101474 0.5941651 

2pt  1.2066771 1.4124647 0.4883920 0.6627137 

3pt  0.5101474 0.4883920 0.2882620 0.3918415 

4pt  0.5941651 0.6627137 0.3918415 0.5995745 

Variance-covariance Matrix of 0t Estimator 

 01t

 

02t  03t  04t  

01t
 

1.5426375 1.3363918 0.5462599 0.6488495 

02t

 

1.3363918 1.6529650 0.5400216 0.7535844 

03t

 

0.5462599 0.5400216 0.3189577 0.4450744 

04t  0.6488495 0.7535844 0.4450744 0.7043424 

Variance -covariance Matrix of rt Estimator 

 1r
t

 

2rt

 

3rt

 

4r
t  

1r
t

 

3.733230 3.673615

 

1.4686897

 

1.986607

 

2rt

 

3.673615 4.165533 1.5256706

 

2.188923 

3r
t

 

1.468690 1.525671 0.7053697 1.004908 

4r
t  1.986607 2.188923 1.0049082 1.517789 

Variance-covariance Matrix of ut Estimator 

 1ut

 
2ut

 
3ut

 
4ut  

1ut

 

1.6760171 1.4843051

 

0.6114653

 

0.7431973

 

2ut

 

1.4843051 1.8177848 0.6127588

 

0.8596508 

3ut

 

0.6114653 0.6127588 0.3508144 0.4914471 

4ut  0.7431973 0.8596508 0.4914471 0.7720322 

Variance-covariance Matrix of dt  Estimator 

 1dt

 
2dt

 
3dt

 
4dt  

1dt

 

1.5840520 1.8696998 0.5453600 0.7087673 

2dt

 

1.8696998 8.1537205 0.5015866 0.8158619 

3dt

 

0.5453600 0.5015866 0.3312526 0.5736758 

4dt  0.7087673 0.8158619 0.5736758 1.8997817 

 

Table 3  shows our multivariate cases; Var-Covmatrices have been computed from the artificial population to observe the 

performance of ratio type estimator. We can see variances on the diagonals of (4 4)  matrices and observe that the variance of 

our proposed estimator for ( )1 2 3 4, , ,Y Y Y Y are less than the variances of 0t , rt , dt  and ut . It shows that our planned estimator 

( pt ) performs better than the other existing estimators. 
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Table 4: Determinant of our proposed and literature estimators for Model II 

Estimator pt

 

0t

 

rt

 

ut

 

dt

 
Determinants

 

0.00200573 0.0043825 0.0124250 0.0048802 1.067941 

 

We compared our multivariate ratio type estimator with existing ratio type estimators. It is observed that our proposed estimator 

has less MSE in all univariate cases as shown in Table 5.1. In Table 5.2, our proposed estimator ( pt ) has lesser determinant 

(0.00200573, which shows the MSE for the multivariate case) among others.   

 

6. Concluding Remarks 

We proposed the multivariate ratio type estimator when some auxiliary variables are known and some are unknown. We found 

out the bias and the Var-Covmatrix for our proposed work. Further, we discussed the bivariate and univariate form of our 

proposed estimator using multi-auxiliary variables. We computed empirical results using Canadian climate data (NOAA) in 

Section 4. In Table 1, the Var-Covmatrices are given for our proposed estimator along with existing estimators. Table 2 

demonstrated the determinants for the multivariate cases and PRE’s for the univariate cases. It is observed that our proposed 

estimator has a smaller determinant among other standing multivariate estimators which provided indication that our planned 

estimator is more effectual.  We performed a simulation study in Section 5 and selected a model to check the efficiency of our 

proposed estimator. The usual ratio estimator behaves well when the simulation model generates symmetric error distributions 

and linear associations between the auxiliary variables and the outcome. We used the normal distribution for generating our four 

auxiliary variables and simulated the data for 1000 times.  In Table 3 and Table 4, it is shown that our proposed estimator pt  is 

more efficient than unbiased variance estimator ( )0t , Isaki (1983) ( )0t , Upadhaya and Singh (1999) ( ut ) and Das and 

Tripathi (1978) ( dt ) and we gained the lesser  MSE for univariate cases.  In future, we hope to discuss the effects of covariance 

terms in formation of a variance-covariance matrix.  We also want to propose this work under stratified sampling. 
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Appendix 

Table A: Details of Variables for Population 

Population NOAA 

 Week-1 (average temp. for May, 2017) 

 Week-2 (average temp. for May, 2017) 

 Week-3 (average temp. for May, 2017) 

 Week-4 (average temp. for May, 2017) 

 Year-2016 (average temp. for May) 

 Year-2015 (average temp. for May) 

 Year-2014 (average temp. for May) 

 Year-2013 (average temp. for May) 

 

Table B: Covariance and Correlation 

Population         

 16.4344 11.7119 11.8797 11.2634 5.0995 2.0234 5.6778 0.5231 

 11.7119 10.0879 9.3665 9.8238 1.3889 2.5090 5.0955 0.7491 

 11.8797 9.3666 9.7386 9.3817 2.8759 2.5086 3.8010 1.3053 

 11.2634 9.8238 9.3817 9.7610 1.3933 3.0050 4.4580 0.9370 

 5.0996 1.3888 2.8759 1.3933 7.4839 0.0406 -0.0779 -0.0538 

 2.0234 2.5090 2.5086 3.0050 0.0406 4.6808 -0.0304 0.0080 

 5.6777 5.0955 3.8009 4.4571 -0.0779 -0.0304 6.6511 -0.0093 

 0.5231 0.7490 1.3052 0.9369 -0.0538 0.0080 -0.0093 2.0420 

 

 

 

 

1Y

2Y

3Y

4Y

1X

2X

3X

4X

1Y 2Y 3Y 4Y 1X 2X 3X 4X

1Y

2Y

3Y

4Y

1X

2X

3X

4X
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Table C: Correlation Matrix 

Population 
        

 
1.0000 0.8869 0.7494 0.7654 0.9026 0.8528 0.8650 0.9122 

 
0.8869 1.0000 0.7215 0.7535 0.8397 0.7789 0.8273 0.8513 

 
0.7494 0.7215 1.0000 0.7959 0.7917 0.8683 0.8342 0.7632 

 
0.7654 0.7535 0.7959 1.0000 0.8335 0.8118 0.8301 0.8193 

 
0.9026 0.8397 0.7917 0.8335 1.0000 0.9420 0.9561 0.9453 

 
0.8528 0.7789 0.8683 0.8118 0.9420 1.0000 0.9667 0.9208 

 
0.8650 0.8273 0.8342 0.8301 0.9561 0.9667 1.0000 0.9257 

 
0.9122 0.8513 0.7632 0.8193 0.9453 0.9208 0.9257 1.0000 

 

1Y 2Y 3Y 4Y 1X 2X 3X 4X

1Y

2Y

3Y

4Y

1X

2X

3X

4X


