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Abstract 

In this study, we introduce a regression-cum-exponential estimator designed for estimating population variance. Specifically, we 

focus on the estimation of unknown population variance in a two-phase sampling setup, considering the use of multiple auxiliary 

variables. We derive and discuss various cases pertaining to this estimation framework. Additionally, we compare the asymptotic 

properties of existing approaches with those of our proposed estimator. This allows us to assess the performance and efficiency of 

the different methods. Finally, we conduct a simulation study to evaluate the performance of our proposed estimator in finite samples, 

specifically utilizing multi-auxiliary variables. This empirical analysis provides insights into the practical effectiveness of the 

estimators. 

Keywords: regression-cum-exponential estimator, two-phase sampling, multi-auxiliary variables, variance estimation, simulation 

study 

 

1. Introduction 

Survey sampling has gained predominate significance across various sectors, including academia, healthcare, and public and private 

industries. The execution of surveys cover both probability and non-probability sampling methods, with public surveys continuance 

a broad range of activities such as agriculture, industry, and healthcare. Undoubtedly, survey sampling has change into an vital tool 

for data collection in various feature of life. 

As the prevalence of survey sampling continues to rise, the need for enhanced methods to interpret results becomes increasingly 

imperative. Variance estimation appears as a pivotal approach in navigating the intricacies of survey designs, facilitating the 

extraction of certain conclusions from the amassed data. The primary goal of survey statisticians is to achieve statistical efficiency 

by leveraging auxiliary information, a facet that consistently proves valuable in enhancing the efficacy of estimators. 

In scenarios where auxiliary information remains unknown for the entire population, the two-phase sampling scheme is exploited. 

Neyman (1938) pioneered this concept, wherein a large sample is initially drawn from the population, with only the auxiliary 

information being observed. Subsequently, a smaller sample is taken from this initial selection to observe the study variable. For 

example, Suppose we want to estimate the average income of households in a city, and we don't have any auxiliary information 

available. We decide to use a two-phase sampling approach. In the first phase, we randomly select neighborhoods across the city and 

in the second phase, we randomly select households within the neighborhoods previously chosen. For each selected household, we 

collect the income information. 

Building on this foundation, Sen (1972) introduced ratio estimators that leverage multi-auxiliary information under double sampling. 

Isaki (1983) proposed ratio and regression estimators employing a single auxiliary variable for population variance estimation. Prasad 

and Singh (1990) later enhanced Isaki's (1983) estimator. Subsequently, Arcos et al. (2005) proposed more efficient estimators 

compared to Isaki's (2008) original estimator. 

Gupta and Shabbir (2008) contributed to the field by introducing hybrid estimators for both population mean and variance. Their 

f3indings revealed that this hybrid class of variance estimators exhibits less bias and greater efficiency compared to Isaki's (2008) 

and Kadilar and Cingi's (2006) estimators. 

Singh et al. (2009) expanded the methodology by developing exponential ratio and product estimators for population variance in 

both single and two-phase sampling, contributing further to the evolution of variance estimation techniques. John et al. (2014) 

introduced a regression estimator that employ multiple auxiliary variables or attributes, along with mixture regression estimators, in 

the context of two-phase sampling for population mean estimation, considering both partial and no information cases. Additionally, 

Singh et al. (2015) developed a chain regression-type estimator for estimating population mean through successive sampling on two 

occasions, incorporating multi-auxiliary variables. Ahmad et al. (2022) put forth an enhanced variance estimator. This novel approach 

leverages dual auxiliary information to enhance the robustness and generalization of the proposed estimator. 

 Numerous researchers have contributed significantly to the exploration of regression, ratio, and exponential estimators employing 

both single and multiple auxiliary variables for the estimation of population variance. Among them, Olkin (1958), Cebrian and Garcia 

(2018),  Upadhyaya and Singh (1983), Shabbir and Gupta (2015), Asghar et al. (2014), Dubey and Sharma (2008), Abid et al. (2020),  

Zaman et al. (2021), and Niaz et al. (2021) have all delved into the development of ratio estimators dedicated to the task of estimating 

population variance. In recent studies, Masood and Shabbir (2016), Singh and Pal (2017), and Adichwal and Singh (2018) have 

extended this exploration. Furthermore, Cekim and Kadilar (2020) proposed ln-type regression estimators specifically designed for 

variance estimation under simple random sampling (SRS).  

Let 
1 2, ,..., kX X X  and 

1 2

2 2 2, ,...,x x xkS S S be the population means and variances of k auxiliary variables where, 1,2,...,k l= and the 

population variance of the study variable is
y

2S .  

Additionally, it is assumed that SY2 denotes the sample variance of the study variable of size n2 selected at the second phase.
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An unbiased estimator of population variance using simple random sampling is given by, 
2

0 yt s=  ,                                                                                                                              (1) 

The variance of the unbiased estimator is given by,  

 4

0 2( ) (y) 1 .yVar t S= −                                                                                              (2) 

 where, 

1

n
=  and 2 (y) Kurtosisof study variable = . 

For the no information case, Abu-Dayyeh & Ahmend (2005) and Sanaullah et al. (2016) proposed the ratio, regression and the 

exponential estimators for the variance estimation using two and several auxiliary variables. Our motivation is to develop a univariate 

regression-cum-exponential estimator using multi-auxiliary variables for the no information case under two-phase sampling. As we 

are dealing with the univariate estimators using multi-auxiliary variables, therefore we adopt the literature estimators for the 

univariate case using 1,2,...,k l=  multi-auxiliary variables for the no information case, i.e. when there is no information about the 

auxiliary variables in the population before sampling.  

We modify the regression estimator of Isaki (1983), which uses multi-auxiliary variables for the no information case as, 

(2) k(2) (1)

2 2 2

1

.
k

l

reg k xy x
k

t s s s
=

 = +  − 
 

                                                                                                             (3) 

The mean square error (MSE) of regt is given, 

( )
(1 1) (1 ) ( 1)( )

2 1

2 2 1( ) .
l x ll l

reg y y yx xyMSE t S   
  

− =  − −   
 

                                                                (4) 

Another regression-type estimator using multi-auxiliary variables is developed, 

( )(1)k (2)k(2)

2

1

,
l

rg ky
k

t s x x
=

= +  −  1, 2,..., .k l=                                                                                               (5)                                                                                            

The MSE of rgt is given, 

( )
(1 1) (1 ) ( 1)( )

2 1

2 2 1 .
d l x d ld l l

rg y y yx x yt S
  

− =  − −   
 
                                                                                             (6) 

Following Sunaullah et al. (2016) we also developed the regression-cum-exponential estimator, 

( )(1)k (2)k(2)

(1)k (2)k2

(1)k (2)k1 1

exp ,
l l

a k ky
k k

x x
t s x x d

x x= =

    −
 = +  −       +    

                                                                        (7) 

Where      k and kd are the known quantities we take the positive values for both                                              

The MSE of at  is given, 

( )
(1 1) (1 ) ( 1)( )

2 1

2 2 1 .
d l x d ld l l

rg y y yx x yt S
  

− =  − −   
 
                                                                                            (8) 

Assuming simple random sampling without replacement (SRSWOR), the expectation results for the relative error are derived in 

Section II. The regression-cum-exponential type estimator of the variance and the special cases of our proposed estimator are 

discussed in Section III. The proposed estimator depends on unknown constants and, by finding their optimum values, our estimator 

is shown to possess smaller variance than the unbiased variance estimator, regression estimator, and the other modified existing 

estimators are also discussed in section III. We present a simulation study in Section IV where the gamma distribution is used to 

demonstrate the usefulness of the proposed multi-auxiliary variable estimator. Finally, the paper concludes with a summary and 

discussions in Section V. The objective of this paper is to use the multi- auxiliary information to decrease the mean square error of 

our proposed estimator. 

 

2. Some Useful Quantities Under Two-Phase Sampling 

In this section, we present some useful quantities to be used to derive the expectation results for the mean square error of proposed 

and existing estimators. Using SRSWOR, the following results for two-phase sampling (nested) design hold, 
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Using multi-auxiliary variables for univariate estimators, the following results are used for finding the mean square error (MSE) 

expressions, 

Let, 

( )

( )

( )

( 2)

(1)1 ( 2)1 (1) 2 ( 2) 2 (1) ( 2)1
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 

                                        (9) 

 

3. The Proposed Estimator 

Motivated by Abu-Dayyeh & Ahmend (2005) and Sunaullah et al. (2016) a regression-cum-exponential type estimator using several 

auxiliary variables is proposed.  Let 
2

(1)x ks   and 
2

(2)x ks  be the sample variances of auxiliary variable k (unknown) when samples of 

size 1n  and 2n  are selected as the first phase and the second phase samples, respectively. Further, it is assumed that 
2

(2)ys  denote 

the sample variance of the study variable of size 2n  selected at second-phase ( 2 1n n ). The proposed estimator along with the 

derivation of mean square error is expressed as:                                                                                                                        

(2)

2 2

(1) k (2) k2 2 2

(1) k (2) k 2 2
1 1 (1) k (2) k

( ) exp ,
l l

x x

s y k x x k

k k x x

s s
t s s s b

s s


= =

  −   
= + −      +     

  1, 2,..., .k l=                                               (10) 

Note that positive values of 
kb produce different families of univariate exponential ratio estimators, and negative values for this 

constant will yield different families of univariate exponential product estimators. For this particular study, 
k  is assumed to be 

unknown and we thus need to estimate its optimum value. 
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Up to first order of approximation, (10) can be written as in 'k s , 

( )( )  
( ) ( )

(1) k ( 2) k (1) k ( 2) k

( 2) (1) ( 2)2

1

2

1 1

S 1 exp 1 ,
2 2k k

l l
x x x x

s y y k x x k

k k

t b

−

= =

   − +     = + + + +            

 
   

     

Now retaining the terms up to the order one and after some simplification we have, 

( )
( )

(2) (1) (2)2

(2)

2

2

2
1

1
S 1 2 ,

2 S

k

k k

l
x

s y y k k x x

k y

S
t b   

=

  
  = + + + −

  
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                                                                   (11) 

Subtracting 
( 2 )

2Sy from both side of (10) and we have, 

( )
( )( )

( 2) ( 2) (1) ( 2)2

( 2)

2 2

1

2

2

1
S S 2 ,

2

where .
S
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k

l
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k

x

y

t b

S
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

=

 
− = + + − 

 

=


                                                                      (12) 

The MSE of can be obtained by squaring (12) and taking expectations, 

( )
( ) ( ) ( ) ( )(1 1) (1 1)1 1

2
4 4

1 2 1 1 1

1 1
( ) ,

2 2l ls s y y y x y xl l
MSE t E t S S E E

   

   
= − =  +    +     

   
                                                 (13) 

where,  

( )
( 1) ( 1)

2
l k k l

b 
 

 = +                                                                                                                             (14)    

Using the results in Section 2, the MSE expression is obtained as: 

( ) ( )
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( )1

2 1 2 ( 1) 1 2
4

( 1) 2 1 (1 ) ( 1)

1 1
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( ) .
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
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 
 + −   + − 

=  
    + −    
 

    

 

                                                                                (15)                         

By differentiating (15) with respect to  , 

( )
0sMSE t

=


, 

We get the optimum value 
( 1) ( ) ( 1)

12 .
l l l lopt x yx  

− =    

Now substituting 
( 1)lopt 

 in (15), we get the minimum mean square error as: 

( )
( ) ( )( )(1 1) (1 ) 1

4 1

min 2 2 1( ) .
l l l ls y y yx x yxMSE t S

   

−=  − −                                                                                            (16) 

3.1. Remark 

It is observed that for 
kb  we may assume (-1, 0, 1) in (10) and we may obtain a univariate regression-cum-exponential product type, 

usual regression estimator and regression-cum-exponential ratio type estimator respectively. We may obtain different univariate 

estimators by assigning different number of auxiliary variables in (10). Furthermore it is also observed that by setting 
kb = 0, we 

may get the regression estimator as in (3) and we get Singh et al. (2009) exponential type ratio and product estimator  by setting 
k

=0 & 
kb =1, 

kb =-1  using single auxiliary variable. 

 

4. Simulation Study 

We now describe a simulation study to demonstrate the efficiency of our proposed estimator for the univariate case. We consider a 

study variable ( )Y along with four auxiliary variables ( )1 2 3 4, , ,X X X X . We calculate the minimum mean squares errors of our 

proposed and modified existing estimators. The percent relative efficiencies (PREs) have also been computed of our proposed 

estimator st , 
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0
0

( )
( , ) 100

( )

Var t
PREs t t

MSE t
•

•

=   

As our proposed estimator is regression-cum-exponential type so here we need to think about the probability distribution for 

estimating our auxiliary variables. We chose the gamma distribution is the suitable one for the exponential part. It is a continuous 

distribution and has two parameters; a shape and a scale parameter.  

The gamma distribution is characterized by two parameters: a shape parameter (k) and a scale parameter (θ). These parameters govern 

the shape and scale of the distribution, allowing for a diverse range of distributions. 

If we have specific information or data for estimating these parameters (k and θ), you can proceed with generating the auxiliary 

variables using the gamma distribution. The gamma distribution is often denoted as Gamma, Gamma(k,θ), where k>0 is the shape 

parameter and θ>0 is the scale parameter. 

By using the following information, we generated 'X s  as: 

1 ~ (0.015,8)X 
, 2 ~ (0.016,6)X 

, 3 ~ (0.017,7)X 
, 4 ~ (0.018,4)X 

 

And the study variable is simulated as: 

*
l

k
k

Y X =
     

~ (2, 2) 
 

The study variable Y with four auxiliary variables under our simulation model can be written as:  

1 2 3 41

1

0.3 0.4 0.8 0.4

*

X X X X

Y

Y

Y 

+ +

=

= +
 

We have selected n1 units in the first phase sampling using Simple Random Sampling Without Replacement (SRSWOR), followed 

by selecting a small sample from the previously chosen units in the second phase (n2), again using SRSWOR. This process has been 

repeated 1000 times to calculate the values of our proposed and existing estimators.

 

2

1

1
var(t ) ( )

q

i i
i

t T
q =

= −
, 1

1 q

i
i

T t
q =

= 
 

The code for the simulation was carried out using the R statistical package (2016) and the broom (2016) and tidyverse packages 

(2016). 

 

Table 1: PREs of our proposed estimator with respect to Sample variance ( 0t ) 

Estimator 

PREs 

10,000N =  

1

2

2000

600

n

n

=

=
 

1

2

1800

600

n

n

=

=
 

1

2

1500

600

n

n

=

=
 

2

0 yt s=  100 100 100 

st  156.0718 133.2068 121.0597 

regt  100.1531 100.3522 100.0922 

rgt  100.016 100.0291 100.0016 

at  111.0891 104.4206 102.4855 

 

Table 1 summarizes the results of the simulation study. In all cases, our proposed estimator is the most efficient estimator.  Because 

the regression-cum-exponential estimator has been implemented for the no information case, when 1 1500n = , then the gain in 

efficiency of the estimator is lower as compared to 1n = 1800 and 2000 because there is less auxiliary information from the first 

phase ( 1 1500n = ). Therefore, for small phase 1 samples, we observe smaller gains in efficiency.  
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Figure 1:  Distribution of five estimators of the population variance for simulated data for two phase 1n sample sizes: the unbiased 

estimator ( 0t ); exponential estimator with mean auxiliary information ( at ); regression estimator using variance auxiliary 

information ( regt ); regression estimator with mean auxiliary information ( rgt ); and our proposed estimator ( st ). 

By increasing the phase-I sample size, we see more dramatic gains in efficiency.  Figure 1 shows that the gains in the efficiency 

result from stabilizing the estimator when it takes on large values.  In each subfigure (a) and (b), we see that the upper tail of the 

distribution for our proposed estimator is much lighter than the tails of the other estimators (in particular, there is either a much 

smaller or completely eliminated secondary mode).  

 

5. Conclusion and Discussion 

We use a simulation model to check the efficiency of our proposed estimator and we find that our regression-cum-exponential 

estimator has less mean square error than the unbiased estimator, Isaki’s (1983) traditional modified regression estimator and the 

modified Sanaullah et al. (2016) estimator as shown in Table 1. We consider three scenarios by taking different sizes of 1n with the 

same size of 2n . When we are taking a small size of 1n from the population, it is found that we have less opportunity to exploit the 

auxiliary information for no information case. By increasing the size of phase one sample, our auxiliary variables provide much more 

information and lead to the best results at 1n =2000. We use the gamma distribution and it is well known that exponential distribution 

is the special case of continuous gamma distribution. The usual regression estimator behaves well when the simulation model 

generates symmetric error distributions and linear associations between the auxiliary variables and the outcome.  However, in many 

practical situations, we observe non-symmetric and skewed situations and then the regression-cum-exponential type estimators 

should provide better results than the simple regression estimator. In this paper, we have clearly identified the importance of 

exponential type estimator. In Fig. 1 (a), it is shown that our estimator is positively skewed (due to the gamma distribution properties 

and the multiplicative error) and one can observe that without using the exponential part as in regt  and rgt , a bimodal sampling 

distribution occurs, with many very poor estimates of the target population variance. Similar results have been shown in Fig.1 (b) by 

changing the size of phase one sample i.e. 1n .  

In future research, we plan to expand our work by considering the extension of our proposed methodology to bivariate and 

multivariate scenarios, utilizing multi-auxiliary variables. This extension would enable us to tackle more complex real-life 

phenomena and improve our understanding of the relationships between variables. To provide a clearer explanation of our work, we 

intend to illustrate its application to a real-life phenomenon through simulated results. This approach will help bridge the gap between 

theoretical concepts and practical implications, offering a more tangible understanding of our proposed estimator. Furthermore, our 

results have demonstrated the superior efficiency of our proposed estimator compared to existing modified estimators that utilize 

multi-auxiliary variables. This finding emphasizes the practical utility and effectiveness of our approach in accurately estimating 

population variances. 

 

 

(a) 1 2000n = (b) 1 1500n =
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