

Bulletin of Business and Economics, 13(1), 653-661

https://bbejournal.com

https://doi.org/10.61506/01.00252

653

Analyzing the Software Architecture of ML-based Covid-19 Detection System: Future Challenges and Opportunities

Romaisa Sabir1, Salman Hassan2, Muhammad Hamza Ittifaq3, Muhammad Waseem Iqbal4,

Mohsin Raza5, Ahmad Raza6, Pehroze Fatima7

Abstract

Two major study topics have emerged because of the challenges in software architecture and ML working together, as modern

software systems produce a vast amount of data that is supported particularly by machine learning (ML), and artificial

intelligence (AI) to produce useful insights. Software architecture for machine learning systems that primarily concerned with

creating architectural methods for creating ML systems more effectively; ii) ML for Software architectures is concerned with

creating ML methods for better-developing software systems. This study focuses on the ML-based software systems' architecture

to highlight the many architectural methods currently in use. To more clearly identify a set of acceptable standards for designing

ML-based software systems, we explore four crucial components of software architecture in this work that demand the focus of

ML and software developers. These areas are based on an ML-based software system for addressing challenges in the COVID-

19 detecting system.

Keywords: Software architecture, COVID-19, Machine learning, Evaluation of Architecture

1. Introduction

As Artificial intelligence (AI) and machine learning (ML) are still gaining popularity, and widespread adoption, they present

unique challenges for development practices, deployments, data quality assurance, and other areas. In addition to the difficulties

faced by traditional software systems, these issues require new approaches to architecture for ML-based systems (Wan et al.,

2019). While ML systems generate vast amounts of data, they also face a range of architectural challenges (Hamid, Ibrar, et al.,

2024). ML can help address some of the challenges facing ML-based systems but better architecting practices are also needed

to ensure these systems thrive on data. This combination of challenges has resulted in two main research areas at the intersection

of software architecture and ML. The first area involves developing architectural techniques to speed up the development of ML

systems, while the second area focuses on using ML to improve software architecture (Hamid, Muhammad, et al., 2023).

1.1. Background

There is an amount of data generated by current software systems. We live in a software-powered data-driven world with a

wealth of data produced by many sources such as online apps, smartphones, and sensors. As computing infrastructure has

developed over time, these data have been supported particularly by machine learning (ML), and artificial intelligence (AI) to

produce useful insights. It has clarified the path for the creation of software platforms and services that enable things like Netflix

recommendations, Google search results, and driverless vehicles. However, along with the difficulties associated with a

traditional software system, the growing use of AI, particularly ML, has created new challenges related to deployments,

development procedures, ensuring data quality, etc. Better architectural techniques are required to overcome these issues with

ML-based software systems (2021 IEEE International Conference on Software Maintenance and Evolution ICSME 2021, n.d.).

On the one side, software systems produce a lot of data but have various architectural challenges. On the other side, ML-based

systems rely on data to function but also demand stronger architectural standards. ML can help to solve some of these problems

(Muccini & Vaidhyanathan, 2021).

Due to the limitations in both software architecture and machine learning, two main study fields have emerged: i) ML system

software architecture. It is mostly devoted to creating architectural approaches to more effectively designing machine learning

(ML) systems, while ML for Software Architecture is focused on creating ML techniques for better building software systems.

In this study, I focus on the former end of the spectrum to provide an overview of the numerous architectural practices used

when creating ML-based software systems (Hamid, Muhammad, Iqbal, Bukhari, et al., 2022). To better, define a standard set

of principles for designing ML-based software systems. In this paper, I address four essential components of software

architecture that deserve the attention of both ML and software practitioners to properly establish a common set of rules for

creating ML-based software systems. These components were developed based on a software approach that uses machine

learning to address problems with chest X-ray imaging in COVID-19 identification (Hamid, Iqbal, Fuzail, Muhammad, Nazir,

et al., 2022).

1.2. Software Architecture and Machine Learning

The design and organization of software systems are referred to as software architecture, whereas machine learning is the process

of developing algorithms that can learn from data and make predictions or judgments based on it.

Overall, incorporating machine learning into a software architecture requires careful consideration of the system's design and

goals, as well as the specific requirements of the machine learning algorithms being used. One issue is how to create a software

system that meets both functional and non-functional requirements. On the other hand, it addresses how to address the numerous

machine learning-related challenges. The process, stakeholders, concerns, etc. are divided even if they exist together in the same

software in the modern world.

Figure 1 illustrates the high-level view of an ML-based software system and how it is perceived by modern software architects.

While the system is unified, it can be seen as two major subsystems: the machine learning subsystem, which focuses on data,

algorithms, and models, and the software subsystem, which encompasses components, connectors, and their interactions. The

software subsystem utilizes machine learning models and continuously generates the data needed for the machine learning

1 Department of Computer Science, Superior University, Lahore, Pakistan, romaisasabir98@gmail.com
2 Department of Computer Science, Superior University, Lahore, Pakistan, maliksalmanhassan9@gmail.com
3 Department of Computer Science, Superior University, Lahore, Pakistan, hamzakamboh82@gmail.com
4 Department of Software Engineering, Superior University, Lahore, Pakistan, waseem.iqbal@superior.edu.pk
5 Faculty of Computer Science Alshifa Institute of Life Sciences Pakistan, razam2888@gmail.com
6 Department of Computer Science, University of Engineering and Technology Lahore, Pakistan, m.ahmadraza457@gmail.com
7 Department of Computer Science, University of Engineering and Technology Lahore, Pakistan, pehrozefatima@gmail.com

https://bbejournal.com/
https://doi.org/10.61506/01.00252
mailto:romaisasabir98@gmail.com
mailto:maliksalmanhassan9@gmail.com
mailto:hamzakamboh82@gmail.com
mailto:waseem.iqbal@superior.edu.pk
mailto:razam2888@gmail.com
mailto:m.ahmadraza457@gmail.com
mailto:pehrozefatima@gmail.com

654

subsystem. Each subsystem involves different stakeholders with their respective concerns. The modern software architect plays

a vital role in coordinating between these two subsystems, which possess distinct characteristics, properties, and team dynamics.

This coordination raises questions about various aspects of architecting, including standardizing architecting practices and

addressing barriers that arise from this setup. The paper goes on to describe existing practices in architecting ML-based software

systems and highlights the future directions to develop improved approaches for architecting such systems (Hamid, Muhammad,

Iqbal, Nazir, et al., 2022).

Fig 1: High-level view of ML-based Software system

2. Architecting ML-Based Software System: Identification of COVID-19

2.1. Using Machine Learning

Coronavirus 2 causes fatal acute respiratory syndrome, (SARS-CoV-2; formerly proviso-named 2019 distinct coronavirus or

2019-nCoV) disease (COVID-19) and has become a significant public health concern (Hamid, Aslam, et al., 2024). Castiglioni

and his colleagues described the application of a deep learning model, specifically a convolutional neural network (CNN), to

analyze chest X-ray images of patients suspected of having COVID-19. The study used a dataset of chest X-rays from both

COVID-19 positive and negative patients, with the AI model trained to differentiate between the two. The results of the study

showed promising findings, indicating that the AI model achieved high accuracy in detecting COVID-19 infection from chest

X-ray images. It is suggested that the use of AI in this context could potentially assist healthcare professionals in the rapid triage

and diagnosis of COVID-19 cases, particularly in regions with a high volume of cases and limited resources (Hamid,

Muhammad, Iqbal, Nazir, et al., 2022). However, there are some limitations to different identification of COVID-19 studies.

These include the relatively small sample size, the absence of external validation, and the retrospective nature of the analysis.

The paper highlights the need for further research and validation to determine the generalizability and real-world applicability

of AI in chest X-ray analysis for COVID-19 diagnosis.

Overall, the study demonstrated the potential of AI, specifically deep learning models, in aiding the diagnosis of COVID-19

infection using chest X-ray images. It provides an initial experience from Lombardy, Italy, which suggests that AI-based

approaches could be valuable tools in supporting healthcare professionals during the COVID-19 pandemic. This epidemic's

spread can be stopped because of the early detection of COVID. But the main issue is the limited supply of test kits. To tackle

this, AI is useful and even used in COVID-19 identification and prediction. A model for COVID-19 detection from chest X-

rays using CheXNet, architecture accurately identified the COVID and normal binary classes with 99.9% accuracy. Applying

the ChestXray14 dataset, the CNN network CheXNet was trained to look for anomalies in chest X-rays. The Authors widened

their model, in general, to recognize each of the 14 diseases in the chestXray14 dataset (Hamid, Iqbal, Fuzail, Muhammad,

Basit, et al., 2022). They employed Densenet121, a pre-trained version of it, in their model to distinguish COVID-19 from binary

classes. With subsequent advancements, it was put into practice in real-time COVID-19 detection settings. An overall

understanding of gathering data, processing it, choosing a model, training it, evaluating it, deploying, and ongoing improvement

is needed to construct an ML-based software system for COVID-19 identification utilizing artificial intelligence with chest X-

ray imaging. It also needs access to a sizable database of chest X-ray pictures and diagnostic imaging and imaging knowledge.

1) Data Collection: The first step in building an ML-based system for a sizable collection of X-ray images of the chest will be

gathered for COVID-19 identification utilizing chest imaging.

The transfer learning approach could be used to develop similar models for other medical imaging applications. It emphasizes

the potential of transfer learning techniques for creating deep learning models for the processing of medical images and contends

that these models could be crucial in the worldwide fight against the COVID-19 epidemic.

Chest X-ray images have been the main source of data for several studies that implement artificial intelligence techniques for

the disease's autonomous classification. Promising results have been made thus far in this area. In the most recent scholarly

655

literature, some issues were brought up by the automatic classification of COVID-19 using artificial intelligence approaches

(Narayan Das et al., 2022). It can be difficult for radiologists to distinguish COVID-19 from CXR images. They must be aware

of the typical patterns of the illness, which are frequently shared with other widespread pneumonia and lead to incorrect

diagnoses. A more accurate method for illness identification is CT imaging. The data that have been revealed so far, in contrast

to what has been suggested; seem to favor CXR over CT. A small number of COVID-19-positive CXR images are made openly

accessible online for use by the scientific community. Most studies add negative images from other data sources to

complete their data. Different sets of these images differ significantly from one another. When assessing using a subset of the

original set of photos, produces exceptionally good outcomes for the automatic categorization of COVID-19. When assessing

the trained models in their own sets, several studies find limited consistency to no generalization power. Even models developed

by the use of preprocessing methods, which attempted to remove the biases inherent in the data sets, produced very modest

results. As a result, the majority of findings to date, as published in the Scientific research, attribute models that notice the traits

of the training sets. Since there is no good evaluation protocol, most of the developed models are still of limited use in clinical

settings.

While machine learning (ML)-based COVID detection systems have shown promise in aiding diagnosis and screening

processes, several potential faults and limitations need to be considered. Some of the faults in ML-based COVID detection

systems include: Limited training data is the main fault in the COVID-19 detection system. ML models require large and diverse

datasets to learn effectively. In the case of COVID-19 detection, access to comprehensive and balanced datasets can be

challenging, particularly during the early stages of a pandemic or in resource-constrained regions. Limited training data may

lead to biases and inaccuracies in the ML model's predictions.

3. Objective

To emphasize the numerous architectural techniques now in use, this study concentrates on the ML-based software systems'

architecture. In this paper, we address four essential components of software architecture that deserve the consideration of both

ML and software practitioners to properly establish a common set of rules for creating ML-based software systems. Architectural

framework, architectural process, self-adaptive architecture, and architectural evaluation fall under this category.

3.1. The software architecture of ML-based system: Future challenges and opportunities

To emphasize the numerous architectural techniques now in use, this section discusses four essential components of software

architecture that should be taken into account by ML practitioners as well as software developers to appropriately construct a

set of guidelines for developing ML-based software systems. We describe in detail what currently exists in each of these

categories and what we think needs to be done in the future. These components have been derived based on architecting ML-

based software systems for addressing challenges in the COVID-19 detecting system.

3.2. Architecture Framework

When it comes to the architectural framework of a COVID-19 detection system, there can be several limitations. Here are some

potential limitations that may arise:

Data Availability and Quality are the major ones. The effectiveness of a COVID-19 detection system heavily relies on the

availability and quality of data. Limited access to diverse and comprehensive datasets can limit the accuracy and generalizability

of the system. Additionally, if the data used for training the system is flawed or biased, it can lead to inaccurate results and

potential disparities in detecting COVID-19 cases. Architectural frameworks may face challenges in scaling up to accommodate

large-scale COVID-19 testing requirements. As the number of tests increases, the system should be able to handle a higher

volume of data, perform computations efficiently, and handle increased traffic. Scaling up the infrastructure and computational

resources to meet the growing demand can be a significant challenge. No detection system is perfect, and there is always a

chance of false positives (incorrectly identifying someone as positive) or false negatives (incorrectly identifying someone as

negative). False positives may result in needless panic and strain on healthcare resources, while false negatives can result in

infected individuals going undetected and potentially spreading the virus. Deep learning models used in architectural

frameworks can be complex and lack interpretability. It can be difficult to comprehend the logic behind the system's decisions

and identify the features contributing to the detection outcome. In critical scenarios like COVID-19, interpretability, and

explainability are crucial to gain the trust of users, healthcare professionals, and regulatory bodies. Integrating a COVID-19

detection system into existing healthcare infrastructure and workflows can be challenging. The system may need to integrate

with electronic health records, laboratory information systems, and other healthcare software. Ensuring seamless deployment,

compatibility, and interoperability with existing systems can be complex. Architectural frameworks must take ethical issues like

data security, privacy, and informed permission into account. Collecting and storing sensitive health data raises concerns about

privacy breaches and potential misuse. Proper safeguards should be in place to protect individuals' personal information and

ensure compliance with relevant regulations and guidelines. COVID-19 has undergone several mutations, resulting in the

emergence of different variants. The architectural framework should be adaptable and robust enough to detect these variants

accurately. Keeping pace with the evolving nature of the virus and updating the system to detect new variants can be a continuous

challenge. It is important to address these limitations while developing and implementing architectural frameworks for COVID-

19 detection systems to ensure their reliability, accuracy, and ethical considerations are properly addressed. In the field of

COVID-19 identification utilizing X-ray imaging and machine learning, several architecture frameworks have been used.

3.3. Existing Architecture Frameworks

CNNs have been widely employed for COVID-19 detection from X-ray images (Memon et al., 2023). Architectures like

VGGNet, ResNet, DenseNet, and InceptionNet have been utilized to extract features and classify images. Transfer learning has

been extensively applied by leveraging models that have already been trained using massive datasets like ImageNet (Hamid,

Iqbal, Fuzail, Muhammad, Basit, et al., 2022). Researchers fine-tune models like ResNet, InceptionNet, or EfficientNet on X-

ray images to detect COVID-19. Autoencoders, including convolutional variants, have been utilized to learn compressed

representations of normal and COVID-19 X-ray images (Hamid, Iqbal, et al., 2023a). These learned representations can aid in

classification tasks. RNNs, particularly Long Short-Term Memory (LSTM) networks, have been employed to capture temporal

dependencies and analyze the progression of COVID-19 in X-ray images over time (Noaman et al., 2023). Ensemble models,

656

which combine multiple individual models (Hamid & Iqbal, 2022), have been explored to improve overall performance and

robustness in COVID-19 detection. Ensemble techniques such as bagging, boosting, and stacking have been applied to CNNs

or other architectures.

Table 1 summarizes the limitations and benefits of various ML models based on different data types commonly used in COVID-

19 detection and medical diagnosis. It serves as a quick reference guide for researchers and healthcare professionals exploring

ML-based approaches for COVID-19 detection and other medical diagnosis tasks. By understanding the limitations and benefits

associated with each combination of data type and ML model, researchers can make informed decisions regarding model

selection, data preprocessing, and potential trade-offs in accuracy and performance. However, it is essential to note that this

table provides a generalized overview, and specific applications may require further investigation and validation based on the

available data and research context.

Table 1: Comparison of various ML models based on different data types

Study Data Type
ML Models and

Techniques
Limitations Benefits

1
Chest X-ray

Images

Convolutional Neural

Networks (CNN)

Limited spatial information in

2D images,

Potential biases, limited

availability

Fast processing for

screening,

2
Chest X-ray

Images

Transfer Learning,

DenseNet201

Suffer from data bias and

limited interpretability.
High accuracy

3
Chest X-ray

Images
Deep Autoencoders

May require large datasets for

training

Potential for improved

accuracy

4
Chest X-ray

Images
GANs

Introduce biases or produce

unrealistic images

Enable data augmentation

and enhance the robustness

5 CT Scans
Convolutional Neural

Networks (CNN)
High radiation dose in CT scans

Detailed imaging for

accurate detection

6

Transfer Learning
Costly and time-consuming

imaging

Efficient in severe and

complex cases

7 Deep Autoencoders Large data storage requirements
Effective in detecting lung

abnormalities

8
Clinical

Notes

Deep Learning

Architectures (RNN,

LSTM, Transformer)

Unstructured and noisy text data
Incorporate textual

information

9 Naive Bayes
Difficult to extract relevant

features

Support early diagnosis and

treatment

10 SVM
May require natural language

processing
Predict disease progression

11
Time Series

Data

Deep Learning

Architectures (RNN,

LSTM, Transformer)

Irregular and missing data

points

Real-time monitoring and

prediction

12 SVM Sensitive to data preprocessing Identify temporal patterns

13 Random Forest
May need specialized handling

methods

Early detection of worsening

condition

14
Gradient Boosting

Machines (GBM)

Computationally expensive and

prone to overfitting

High predictive accuracy and

the ability to capture

complex patterns

15
Clinical

Features
Decision Trees

Limited features for complex

scenarios

Easily interpretable by

healthcare professionals

16 Naive Bayes May not capture subtle patterns
Assist in risk assessment and

prognosis

17 SVM
Incomplete representation of

patients

Facilitate personalized

treatment plans

18 Random Forest

susceptibility to overfitting with

noisy data and limited

representation

high accuracy and

interpretable

3.4. Future development

Explainable Transfer Learning COVID-Net (ETL-COVID) is designed for COVID-19 detection from medical imaging data,

such as chest X-rays or CT scans. The model leverages the benefits of transfer learning and incorporates explainability features

to provide insights into its decision-making process, making it interpretable for healthcare professionals.

3.5. Key Features of ETL-COVID

• Transfer Learning: ETL-COVID uses transfer learning, a technique where a pre-trained deep learning model (usually

trained on a large and diverse dataset, e.g., ImageNet) is adapted to a specific task with limited labeled data. By utilizing

pre-trained weights, the model benefits from learned features from general medical image data, making it more data-

efficient and improving its performance.

• CNN Architecture: ETL-COVID is built upon a Convolutional Neural Network (CNN) architecture. CNNs are known

657

for their ability to learn hierarchical features from images, enabling them to automatically extract relevant patterns and

information from the input data.

• Interpretability through Attention Mechanism: To achieve interpretability, ETL-COVID incorporates attention

mechanisms, such as Grad-CAM (Gradient-weighted Class Activation Mapping). These mechanisms generate

heatmaps that highlight the regions in the medical images that significantly influence the model's predictions. This

provides visual explanations for why the model made a specific decision, increasing trust and understanding for

clinicians. Here's a mathematical explanation of Grad-CAM:

f: 𝑅𝐻×𝑊×𝐶 → 𝑅 be the CNN model used for COVID-19 detection, where H and W are the height and width of the

input image, and C is the number of channels. The output of the last convolutional layer of the CNN is denoted as A,

which is a H′×W′×K feature map, where K is the number of filters in that layer.

Grad-CAM aims to visualize the importance of different regions of the input image x concerning the model's final

prediction f(x) by computing the gradient of the predicted class Yc concerning the feature maps A of the last

convolutional layer:

𝑎𝑘=
𝑐

1

𝑍
∑ 𝑖 ∑ 𝑗

𝜕𝑦𝑐

𝜕𝐴𝑖𝑗
𝑘

Where:

• 𝑎𝑘
𝑐

 is the importance weight of the k-th feature map for the predicted class c.

• Z is a normalization factor.

•
𝜕𝑦𝑐

𝜕𝐴𝑖𝑗
𝑘 represents the gradient of the predicted class score 𝑤𝑖𝑡ℎ respect to the activation value 𝐴𝑖𝑗

𝑘 in the k-th

feature map.

Next, Grad-CAM computes the class activation map 𝐿𝐺𝑟𝑎𝑑𝐶𝐴𝑀
𝑐 by performing a weighted combination of the feature

maps A using the importance weights 𝑎𝑘
𝑐 :

𝐿𝐺𝑟𝑎𝑑𝐶𝐴𝑀
𝑐 = 𝑅𝑒𝐿𝑈 (∑ 𝑎𝑘

𝑐 𝐴𝑘𝐾
𝑘=1

Where 𝐴𝑘 k-th feature map in the last convolutional layer.

Finally, Grad-CAM generates the heatmap 𝐻𝐺𝑟𝑎𝑑𝐶𝐴𝑀
𝑐 by upsampling the class activation map to the original input image

size:

𝐻𝐺𝑟𝑎𝑑𝐶𝐴𝑀
𝑐 = 𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑒 (𝐿𝐺𝑟𝑎𝑑𝐶𝐴𝑀

𝑐)

• Data Augmentation: To improve the model's robustness and reduce overfitting, ETL-COVID applies data augmentation

techniques during training. This involves creating variations of the training images by applying transformations like

rotation, scaling, and flipping, which diversifies the dataset and allows the model to learn from a more extensive range

of variations.

• Efficient Inference: ETL-COVID is designed for efficient inference, enabling real-time or near-real-time predictions.

This allows it to be used in point-of-care scenarios, where quick and accurate COVID-19 detection is critical for patient

management and public health measures.

• Ensemble Approach: ETL-COVID can be part of an ensemble system that combines predictions from multiple models,

each trained on different aspects of the data. Ensemble methods enhance the overall performance and robustness of the

COVID-19 detection system.

• Ethical Considerations: ETL-COVID prioritizes patient privacy and ethical considerations. It adheres to data

anonymization and follows strict security protocols to protect sensitive patient information, ensuring compliance with

privacy regulations.

• Validation and Clinical Studies: ETL-COVID undergoes extensive validation and evaluation on diverse and real-world

clinical datasets, representing different patient populations and imaging protocols. Rigorous clinical studies are

conducted to assess its performance and effectiveness in detecting COVID-19.

ETL-COVID aims to provide an accurate, interpretable, and efficient solution for COVID-19 detection, assisting healthcare

professionals in making informed decisions and improving patient care during the ongoing pandemic. However, it's essential to

recognize that the success of ETL-COVID and any other model depends on access to high-quality data and continuous research

advancements in machine learning and medical imaging.

4. Architecting Process

As the technology and understanding of COVID-19 continue to evolve, the architecting process for these detection systems will

likely undergo improvements and refinements. Here are some potential developments to look out for in each phase of the

architecting process:

What exists: Relevant X-ray images of COVID-19 patients and non-COVID-19 cases are collected from various sources. Data

augmentation techniques may be applied to increase the diversity and size of the dataset. The collected data is preprocessed to

enhance quality and remove noise. This may involve resizing images, normalizing pixel values, and applying filters or other

image processing techniques. The appropriate ML architecture framework, such as CNNs or transfer learning models, is chosen

based on the available data, computational resources, and performance requirements. According to Zhiyuan et al., the

development of machine learning (ML) systems follows an iterative and incremental process. Initially, experiments are

conducted to identify the most suitable algorithm or technique to fulfill specific requirements. This iterative approach often

involves modifying the system's architecture to accommodate the chosen algorithm or technique. This could entail enhancing

data collection mechanisms or adding additional components for pre-processing. Consequently, continuous collaboration

between software architects, ML stakeholders (with a medical background), and software system stakeholders (with a

programming background) is necessary. The divergent development methodologies and backgrounds of these teams can

influence the various stages of the architecting process.

658

The selected model is trained on the preprocessed dataset. This involves splitting the data into training and validation sets,

configuring hyperparameters, and optimizing the model using techniques like backpropagation and gradient descent. The trained

model is evaluated using separate test data that was not used during training. Evaluation metrics such as accuracy, precision,

recall, and F1 score are calculated to assess the model's performance. If the model's performance is not satisfactory, further

iterations of training, hyperparameter tuning, or model architecture adjustments may be conducted to enhance its accuracy and

generalization. The trained model is validated using independent datasets or external validation studies to assess its performance

in real-world scenarios and compare it against existing approaches. Once the model demonstrates satisfactory performance, it

can be deployed as part of a software system or integrated into existing healthcare infrastructure for practical use. Considerations

like privacy, security, and regulatory compliance are taken into account during deployment.

Potential development: It's important to note that the architecting process is iterative and may involve continuous

improvements and updates as new research findings and technological advancements emerge.

I. Architecture Design: Advancements in ML research may lead to the development of more specialized models for

COVID-19 detection, tailored to handle specific data types (e.g., X-ray images, genomic data) and address particular

challenges. Architecting may involve the design of ensemble models that combine the strengths of multiple ML models

to improve overall accuracy and reliability in COVID-19 detection. COVID-19 detection systems may adopt domain-

specific architectures that incorporate domain knowledge from medical experts, virologists, and epidemiologists to

enhance the model's performance. As new variants of the virus emerge, the architecture may be adapted to ensure

effective detection, considering changes in image features or clinical presentations.

II. Architecture Analysis: Architecture analysis will include evaluating ML models for potential biases and ensuring

fairness in COVID-19 detection across different demographic groups to avoid disparities in healthcare outcomes.

COVID-19 detection systems may incorporate techniques to estimate model uncertainty, providing more reliable and

informative predictions, particularly in cases with limited or uncertain data.

III. Architecture Realization: The realization phase will focus on developing ML-based COVID-19 detection systems

that can scale to handle large volumes of data and deploy across various healthcare settings, including hospitals, clinics,

and mobile health units. Realization may involve optimizing ML models for edge computing, enabling faster and

decentralized COVID-19 testing and diagnosis.

IV. Architecture Representation: An important outcome of the software architecting process is the creation of artifacts

that can effectively communicate the system's architecture to relevant stakeholders.

Given the sensitive nature of healthcare data, architecture processes may include compliance with regulations such as GDPR

and HIPAA, as well as ethical considerations surrounding data usage, bias mitigation, and transparency. Future architecture

processes may focus on the seamless integration of ML-based COVID-19 detection systems into the clinical workflow, ensuring

usability, interoperability, and integration with electronic health records (EHR) systems. Ongoing research and advancements

in the field will likely contribute to further enhancements in the accuracy, reliability, and real-world deployment of these

systems.

5. Self-adaptative architecture

Self-adaptative architecture gives the system the capacity to autonomously adapt its architecture (with minimal human

intervention) to manage the numerous types of uncertainties that may result in a deterioration or failure of the Quality of Service.

The ability of a system to dynamically modify its architecture in response to shifting circumstances or requirements is known

as self-adaptive architecting. Using X-ray imaging and machine learning for COVID-19 detection, self-adaptive architecting

can significantly increase system performance and flexibility. Though particular applications of self-adaptive architecting

methods may differ, the following are some current strategies and prospective advancements in this field:

What exists: Since the phrase "Software Crisis" was first used in 1968 at the NATO Software Engineering Conference, the

field of self-adaptive systems has developed over time [63]. Due to resource limitations, component failures, etc., modern

software systems are prone to a variety of uncertainties. Self-adaptation, which enables the architectures to autonomously adapt

to the various uncertainties to achieve the system's ultimate goals, has emerged throughout time as a potential remedy. Self-

adaptive systems have been the subject of a significant amount of literature research. Some studies offered a thorough assessment

of the many methods for designing self-adaptive systems. Various papers have been published in the self-adaptation literature

in recent years that employ machine learning methods to improve the adaptability of conventional software systems.

Additionally, efforts have been made to modify machine learning methodologies to more effectively guarantee robustness.

Based on variables like available resources, data features, and fluctuating performance requirements, the system can dynamically

choose the best machine learning model for COVID-19 identification. As a result, the system can maximize detection accuracy

and adjust to various conditions. The performance of a model can be greatly influenced by hyperparameters like regularization,

batch size, and learning rate. The model's efficacy can be increased by automatically adjusting these hyperparameters based on

real-time feedback through self-adaptive techniques like reinforcement learning or Bayesian optimization. Adaptive Data

Preprocessing: Certain data preprocessing operations, such as filtering, normalization, and image scaling, can be modified by

the unique properties of the input data. This guarantees that the X-ray images provide the most pertinent and appropriate data

for the ML model. Runtime Configuration Adaptation: The system can modify its runtime configuration in response to several

variables, including the availability of computational resources, network conditions, and processing speed requirements. To

satisfy resource and performance limitations, the system, for instance, can optimize the inference process or dynamically modify

the model's complexity.

Potential Developments in Self-Adaptive Architecting: The efficacy, flexibility, and robustness of ML-based COVID-19

detection systems may be improved by these prospective advancements in self-adaptive architecture.

I. Architectural Adaptation by ML: This refers to applying ML methods to implement architectural adaptations. For

example, the machine learning methods from the machine learning subsystem (Figure 1) can be used to predict the

uncertainties that the software subsystem might experience (such as excessive CPU usage, malfunctions, etc.). It can

also be used to choose the optimal adaptation approach for the design on its own. These tactics could include

659

rearranging the component behavior, altering the software subsystem's structure, etc. However, inaccurate uncertainty

estimates or poor strategy selection might result in less-than-ideal or impractical adaptations, which may have an

unintentional impact on how a system operates. Furthermore, these methods must account for the probabilistic character

of machine learning processes, which may contribute to uncertainty.

II. Architectural Adaptation for ML: The selection and use of the ML method affects the overall efficiency (response

time, usage, etc.) of an ML-based software system. This is because the final model's complexity is determined by the

algorithm chosen. For example, going back to the ML subsystem in Figure 1, we can tackle the same problem using

multiple methods, which naturally yields different types of computationally complex models and offers different

accuracy measurements. A more intricate deep learning technique could result in a more accurate and substantial model

(such as one with multiple neural network layers). However, using the model may require additional CPU resources

and processing time due to its density and increased number of number parameters, and software component(s) from

the software subsystem Figure 1. On the other hand, employing a lighter model could provide better performance

guarantees to the components that use it despite the loss of accuracy (e.g., reduced latency for creating a forecast and

hence better response time). Different versions and types of ML models are generated at runtime throughout time by

the ML subsystem using automated MLOps procedures. This would necessitate that the software subsystem uses

techniques to automatically change between selecting ML models while taking the system's overall performance

requirements into account.

III. Architectural Adaptation of ML: Accuracy and learning bias are two issues that ML faces [13]. Furthermore, as a

result of data fluctuations over time, machine learning models experience model degradation, which causes the

accuracy to gradually decline. For example, the ML system (Figure 1) may be using ML models that are optimized for

particular sorts of data. However, as Figure 1 shows, additional data also enters the system over time, which may

indicate that the models' predictions begin to deteriorate as well. This behavior may cause the software subsystem's

components that consume the model to behave erratically (for example, a recommendation system may begin to give

the user ridiculous recommendations). To ensure robustness, this may necessitate modifying the design or behavior of

the neural network or machine learning algorithm itself (e.g., dynamically changing the layers of a deep neural network,

adapting hyperparameters, etc.). This will become increasingly important in the upcoming years, particularly with the

rise in popularity of Software 2.0 [14], which calls for the autonomous design and implementation of software

components through machine learning techniques.

This suggests that more advanced methods will be needed:

• Ensemble learning, combining the predictions of multiple models trained with different architectural configurations.

The ensemble can adapt by giving more weight to the models that perform better on specific data or conditions.

• Reinforcement learning techniques to adapt its hyperparameters, such as the architecture itself or the choice of pre-

trained models. RL agents can learn to make architectural choices that optimize the model's performance.

Explainable Transfer Learning implements a learning rate scheduler that adjusts the learning rate during training. If the model's

performance plateaus or deteriorates, the scheduler reduces the learning rate to allow the model to adapt more slowly.

Conversely, if the model is learning quickly, the learning rate can be increased to speed up adaptation. It is designed to adapt its

knowledge from a source domain (e.g., general medical images) to a target domain (COVID-19 cases) in real time. This

adaptation can help the model respond to changes in the data distribution. ETL-COVID can incorporate reinforcement learning

(RL) agents to optimize hyperparameters. These agents can autonomously explore different architectural configurations,

regularization methods, and learning rates, adapting the model's architecture for improved performance.

More advanced self-adaptive methods should be created and used as the field's research advances to meet the demands and

difficulties of COVID-19 detection by X-ray imaging. Heatmaps are utilized to accurately and understandably convey forecasts

of COVID-19 situations using an XAI method called LIME. To improve explainability, the suggested model is also expanded

using the LIME and heatmap approaches. XAI technologies provide explainability and transparency, which aid non-expert end

users in understanding the black box AI model. It gives the user feedback and explains, i.e., by giving more details and going

all the way down to the inner workings of the black box AI mod. The researchers detected COVID-19 with extremely high

accuracy by using edge fuzzy images based on Explainable artificial intelligence for detection and identification. They attain an

accuracy of 0.95 utilizing quantization technology. Even though the researcher's COVID-19 detection accuracy, sensitivity, and

specificity were good. With the hope that it may be improved upon to hasten research in this field, the analysis's goal is to present

radiologists, data scientists, and the scientific community with a multi-input CNN model that may be used to detect COVID-19

promptly.

6. Architecture Evolution

Architecture evolution is the process of continuously enhancing and changing a system's architecture through time through

iterations. Architecture evolution is a critical component in improving the resilience, performance, and adaptability of the

COVID-19 detection system when it comes to machine learning. An outline of current theories on the evolution of architecture

and future directions for this field is provided below:

What Exists: The literature on the evolution of software architecture has undergone a great deal of attention. The architecture

of contemporary software systems, particularly ML-based software systems, is always changing. It is anticipated that the design

of these systems will continuously change during runtime. This is mostly because as time goes on, more data becomes accessible

along with the diffusion of improved and newer algorithms. The learning algorithm may need to be updated as a result of this

procedure. Additionally, this could mean installing a new database or altering the existing one to accommodate the additional

data, modifying software components since the ML component's interface has changed, and so forth. Furthermore, more

sophisticated methods are needed to explore the limits of data and learning at each stage of the evolution. Additionally, disruptive

events have the potential to alter the dynamics of the system, necessitating an upgrade or downgrade in previously obtained

knowledge, or even the loss of utility. More investigation and discussion are needed on how these circumstances should be

handled and how to satisfy both functional and non-functional requirements by resolving them. ML models that are employed

660

to detect COVID-19 may be frequently retrained or adjusted using fresh data (Hamid, Iqbal, et al., 2023b). The model may learn

from additional samples of tagged X-ray pictures as they become available, allowing it to detect patterns better and improve

detection accuracy.

Potential Developments in Architecture Evolution: The data and model, dependent on the learning algorithm selected, are

the main forces behind ML-based systems. The design of the entire system may need to adapt over time to accommodate any

changes in requirements brought about by the data or algorithm to meet the overall requirements (Hamid, Aslam, et al., 2024).

This raises two crucial points that should be taken into account:

I. Data-induced evolution: In ML-based systems is a pivotal strategy for ensuring the continued relevance,

accuracy, and adaptability of these systems in a dynamic and data-rich environment. It involves the seamless

integration of new and diverse data sources, enabling the system to process a wide array of data types and formats.

This approach not only enhances data quality and cleaning processes but also equips ML models with the ability

to handle imbalanced datasets more effectively (Salahat et al., 2023). Adaptive learning and real-time learning

mechanisms empower these systems to autonomously refine their performance, making them agile in responding

to changing data patterns and insights. Importantly, data-induced evolution incorporates measures for data drift

detection and adaptation, ensuring that ML models remain accurate as data distributions evolve (Hamid,

Muhammad, Iqbal, Nazir, et al., 2022) (Hamid, Ayub, et al., 2024). This adaptability extends to the personalization

of services, with ML systems tailoring their responses based on individual user behavior or unique data

characteristics (Hamid, Iqbal, Nazir, Muhammad, et al., 2022). Collaboration, both on a global scale and with

ethical considerations, is central to responsible evolution, while continuous model updates ensure that these

systems remain at the forefront of knowledge and utility in their respective domains.

II. ML Algorithm-induced evolution: Selecting the learning algorithm(s) to be utilized and the kind of model(s)

that will be produced throughout the learning process is the second important component of any machine learning

software system. Following architecture implementation, the machine learning component of the system often

continues to produce new ML models regularly, contingent upon the availability of qualitative as well as

quantitative information. Some common MLOps procedures are used to further deploy these models into

production. To create more accurate or lighter models for performance, the learning algorithm may need to be

adjusted over time. It might be necessary to change the model interface and gather additional data to achieve this.

This can also necessitate changing the software's architecture to better meet the demands of the new learning

algorithm. The evolution may encompass the integration of cutting-edge techniques, such as advanced

optimization algorithms, novel loss functions, or state-of-the-art neural network architectures. Moreover, model

interpretability methods can become more sophisticated, offering a deeper understanding of model decisions. Such

algorithmic evolution ensures that ML systems can keep pace with the rapidly advancing field of machine learning

and the ever-changing demands of data-driven applications, fostering a path to more accurate, efficient, and

adaptable solutions (Hamid, Waseem Iqbal, Arif, Mahmood, et al., 2022).

There will be an increasing focus on the models' interpretability and explainability when evaluating COVID-19 detection

systems. Gaining the confidence of regulatory agencies and medical professionals requires explainable AI. Scholars must

evaluate the degree of interpretability offered by ETL-COVID systems. Research will continue to improve performance metrics

related to COVID-19 detection. Other metrics, such as the F1 score, area under the receiver operating characteristic curve (AUC-

ROC), and area under the precision-recall curve (AUC-PR), may be prioritized in addition to sensitivity, specificity, and

accuracy. A crucial component of the evaluation will be how resilient the models are to changes in the distribution of data and

how well they generalize to other populations. It will be crucial to use cross-validation methods that take into consideration

various data splits and sources. The system's capacity to adjust to shifting data distributions, new viral strains, and changing

medical procedures will be the main areas of assessment. Adaptability and strategies for continuous learning will be evaluated.

Human-in-the-loop systems, such as ETL-COVID, may include input and interaction from healthcare professionals as a major

part of the review process. These models of collaboration will be evaluated for efficacy. The assessment of COVID-19 detection

systems may entail determining how well they adjust to various geographical conditions as well as how well international

cooperation and data exchange enhance detection accuracy. Models such as ETL-COVID may require regulatory approval from

agencies such as the FDA or CE marking. Compliance with medical device regulations will be part of the evaluation process.

7. Conclusion

The software architecture of ML-based systems has been the focus of our discussion in this work regarding the state of the

software architecture of ML-based COVID-19 detection system. We think that future software architects' roles will shift from

being simply another software architect to being ML-aware software architects based on the context of talks made in light of

our experience designing an ML-based system. In essence, the architect's vision will not have a dividing boundary. There won't

be any distinctions made at the design level between software and machine learning components, resulting in a more cohesive

perspective. Instead, they will be seen as an additional component, similar to a data/event generator, data/event consumer, or

model generator. Better architecting techniques can be achieved by using this perspective to help the architect understand an

ML-based software system from the perspectives of software architecture and machine learning. We have suggested numerous

paths in this work that will enable the community to make progress toward the achievement of this standard. The four topics we

have examined in this study are based on our knowledge of designing the COVID-19 Detection system's ML-based software

system.

References

2021 IEEE International Conference on Software Maintenance and Evolution ICSME 2021. (n.d.).

Hamid, K., Aslam, Z., Delshadi, A., Ibrar, M., Mahmood, Y., & Iqbal, M. waseem. (2024). Empowerments of Anti-Cancer

Medicinal Structures by Modern Topological Invariants. 7, 668–683.

661

Hamid, K., Ayub, N., Delshadi, M. A., Ibrar, M., Rahim, N. Z. A., Mahmood, Y., & Iqbal, M. W. (2024). Empowered corrosion-

resistant products through HCP crystal network: A topological assistance. Indonesian Journal of Electrical Engineering

and Computer Science, 34(3), Article 3.

Hamid, K., Ibrar, M., Delshadi, A. M., Hussain, M., Iqbal, M. W., Hameed, A., & Noor, M. (2024). ML-based Meta-Model

Usability Evaluation of Mobile Medical Apps. International Journal of Advanced Computer Science and Applications

(IJACSA), 15(1), Article 1.

Hamid, K., & Iqbal, M. waseem. (2022). Topological Evaluation of Certain Computer Networks by Contraharmonic-Quadratic

Indices. Computers, Materials and Continua, 74, 3795–3810.

Hamid, K., Iqbal, M. waseem, Aqeel, M., Liu, X., & Arif, M. (2023a). Analysis of Techniques for Detection and Removal of

Zero-Day Attacks (ZDA) (pp. 248–262).

Hamid, K., Iqbal, M. waseem, Aqeel, M., Liu, X., & Arif, M. (2023b). Analysis of Techniques for Detection and Removal of

Zero-Day Attacks (ZDA) (pp. 248–262).

Hamid, K., Iqbal, M. waseem, Fuzail, Z., Muhammad, H., Basit, M., Nazir, Z., & Ghafoor, Z. (2022). Detection of Brain Tumor

from Brain MRI Images with the Help of Machine Learning & Deep Learning.

Hamid, K., Iqbal, M. waseem, Fuzail, Z., Muhammad, H., Nazir, Z., Ashraf, M. U., & Bhatti, S. (2022). Empowerment Of

Chemical Structure Used In Anti-Cancer And Corona Medicines. Tianjin Daxue Xuebao (Ziran Kexue Yu Gongcheng

Jishu Ban)/Journal of Tianjin University Science and Technology, 55, 41–54.

Hamid, K., Iqbal, M. waseem, Nazir, Z., Muhammad, H., & Fuzail, Z. (2022). Usability Empowered By User’s Adaptive

Features In Smart Phones: The Rsm Approach. Tianjin Daxue Xuebao (Ziran Kexue Yu Gongcheng Jishu Ban)/Journal

of Tianjin University Science and Technology, 55, 285–304.

Hamid, K., Muhammad, H., Iqbal, M. waseem, Bukhari, S., Nazir, A., & Bhatti, S. (2022). Ml-Based Usability Evaluation Of

Educational Mobile Apps For Grown-Ups And Adults. Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University

(Engineering and Technology Edition), 41, 352–370.

Hamid, K., Muhammad, H., Iqbal, M. waseem, Nazir, A., shazab, & Moneeza, H. (2023). Ml-Based Meta Model Evaluation Of

Mobile Apps Empowered Usability Of Disables. Tianjin Daxue Xuebao (Ziran Kexue Yu Gongcheng Jishu Ban)/Journal

of Tianjin University Science and Technology, 56, 50–68.

Hamid, K., Muhammad, H., Iqbal, M. waseem, Nazir, Z., Irfan, D., & Rashed, R. (2022). Empowerments Of Chemical

Structures Used For Curing Lungs Infections By Modern Invariants. Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin

University (Engineering and Technology Edition), 41, 439–458.

Hamid, K., Waseem Iqbal, M., Arif, E., Mahmood, Y., Salman Khan, A., Kama, N., Azmi, A., & Ikram, A. (2022). K-Banhatti

Invariants Empowered Topological Investigation of Bridge Networks. Computers, Materials & Continua, 73(3), 5423–

5440.

Memon, A., Nazir, A., Hamid, K., & Iqbal, M. waseem. (2023). An efficient approach for data transmission using the encounter

prediction m. Ashraf nazir khalid hamid muhammad waseem iqbal. Tianjin Daxue Xuebao (Ziran Kexue Yu Gongcheng

Jishu Ban)/Journal of Tianjin University Science and Technology, 56, 92–109.

Muccini, H., & Vaidhyanathan, K. (2021). Software Architecture for ML-based Systems: What Exists and What Lies Ahead.

Narayan Das, N., Kumar, N., Kaur, M., Kumar, V., & Singh, D. (2022). Automated Deep Transfer Learning-Based Approach

for Detection of COVID-19 Infection in Chest X-rays. Ingenierie et Recherche Biomedicale, 43(2), 114–119.

Noaman, S., Ibrahim, A., Ali, L., Iqbal, M., Ashraf, A., Haseeb, U., Muneer, S., Almajed, R., & Hamid, K. (2023). Playing the

video games during COVID-19 pandemic and its effects on player’s well-being (p. 5).

Salahat, M., Said, R., Hamid, K., Haseeb, U., Ghani, E., Abualkishik, A., Iqbal, M. W., & Inairat, M. (2023). Software Testing

Issues Improvement in Quality Assurance (p. 6).

Wan, Z., Xia, X., Lo, D., & Murphy, G. (2019). How does Machine Learning Change Software Development Practices? IEEE

Transactions on Software Engineering, PP, 1–1.

