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Abstract 

Two major study topics have emerged because of the challenges in software architecture and ML working together, as modern 

software systems produce a vast amount of data that is supported particularly by machine learning (ML), and artificial 

intelligence (AI) to produce useful insights. Software architecture for machine learning systems that primarily concerned with 

creating architectural methods for creating ML systems more effectively; ii) ML for Software architectures is concerned with 

creating ML methods for better-developing software systems. This study focuses on the ML-based software systems' architecture 

to highlight the many architectural methods currently in use. To more clearly identify a set of acceptable standards for designing 

ML-based software systems, we explore four crucial components of software architecture in this work that demand the focus of 

ML and software developers. These areas are based on an ML-based software system for addressing challenges in the COVID-

19 detecting system. 
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1. Introduction 

As Artificial intelligence (AI) and machine learning (ML) are still gaining popularity, and widespread adoption, they present 

unique challenges for development practices, deployments, data quality assurance, and other areas. In addition to the difficulties 

faced by traditional software systems, these issues require new approaches to architecture for ML-based systems (Wan et al., 

2019). While ML systems generate vast amounts of data, they also face a range of architectural challenges (Hamid, Ibrar, et al., 

2024). ML can help address some of the challenges facing ML-based systems but better architecting practices are also needed 

to ensure these systems thrive on data. This combination of challenges has resulted in two main research areas at the intersection 

of software architecture and ML. The first area involves developing architectural techniques to speed up the development of ML 

systems, while the second area focuses on using ML to improve software architecture (Hamid, Muhammad, et al., 2023). 

1.1. Background 

There is an amount of data generated by current software systems. We live in a software-powered data-driven world with a 

wealth of data produced by many sources such as online apps, smartphones, and sensors. As computing infrastructure has 

developed over time, these data have been supported particularly by machine learning (ML), and artificial intelligence (AI) to 

produce useful insights. It has clarified the path for the creation of software platforms and services that enable things like Netflix 

recommendations, Google search results, and driverless vehicles. However, along with the difficulties associated with a 

traditional software system, the growing use of AI, particularly ML, has created new challenges related to deployments, 

development procedures, ensuring data quality, etc. Better architectural techniques are required to overcome these issues with 

ML-based software systems (2021 IEEE International Conference on Software Maintenance and Evolution ICSME 2021, n.d.). 

On the one side, software systems produce a lot of data but have various architectural challenges. On the other side, ML-based 

systems rely on data to function but also demand stronger architectural standards. ML can help to solve some of these problems 

(Muccini & Vaidhyanathan, 2021). 

Due to the limitations in both software architecture and machine learning, two main study fields have emerged: i) ML system 

software architecture. It is mostly devoted to creating architectural approaches to more effectively designing machine learning 

(ML) systems, while ML for Software Architecture is focused on creating ML techniques for better building software systems. 

In this study, I focus on the former end of the spectrum to provide an overview of the numerous architectural practices used 

when creating ML-based software systems (Hamid, Muhammad, Iqbal, Bukhari, et al., 2022). To better, define a standard set 

of principles for designing ML-based software systems. In this paper, I address four essential components of software 

architecture that deserve the attention of both ML and software practitioners to properly establish a common set of rules for 

creating ML-based software systems. These components were developed based on a software approach that uses machine 

learning to address problems with chest X-ray imaging in COVID-19 identification (Hamid, Iqbal, Fuzail, Muhammad, Nazir, 

et al., 2022). 

1.2. Software Architecture and Machine Learning 

The design and organization of software systems are referred to as software architecture, whereas machine learning is the process 

of developing algorithms that can learn from data and make predictions or judgments based on it.  

Overall, incorporating machine learning into a software architecture requires careful consideration of the system's design and 

goals, as well as the specific requirements of the machine learning algorithms being used. One issue is how to create a software 

system that meets both functional and non-functional requirements. On the other hand, it addresses how to address the numerous 

machine learning-related challenges. The process, stakeholders, concerns, etc. are divided even if they exist together in the same 

software in the modern world. 

Figure 1 illustrates the high-level view of an ML-based software system and how it is perceived by modern software architects. 

While the system is unified, it can be seen as two major subsystems: the machine learning subsystem, which focuses on data, 

algorithms, and models, and the software subsystem, which encompasses components, connectors, and their interactions. The 

software subsystem utilizes machine learning models and continuously generates the data needed for the machine learning
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subsystem. Each subsystem involves different stakeholders with their respective concerns. The modern software architect plays 

a vital role in coordinating between these two subsystems, which possess distinct characteristics, properties, and team dynamics. 

This coordination raises questions about various aspects of architecting, including standardizing architecting practices and 

addressing barriers that arise from this setup. The paper goes on to describe existing practices in architecting ML-based software 

systems and highlights the future directions to develop improved approaches for architecting such systems (Hamid, Muhammad, 

Iqbal, Nazir, et al., 2022). 

 
Fig 1: High-level view of ML-based Software system 

 

2. Architecting ML-Based Software System: Identification of COVID-19  

2.1. Using Machine Learning 

Coronavirus 2 causes fatal acute respiratory syndrome, (SARS-CoV-2; formerly proviso-named 2019 distinct coronavirus or 

2019-nCoV) disease (COVID-19) and has become a significant public health concern (Hamid, Aslam, et al., 2024). Castiglioni 

and his colleagues described the application of a deep learning model, specifically a convolutional neural network (CNN), to 

analyze chest X-ray images of patients suspected of having COVID-19. The study used a dataset of chest X-rays from both 

COVID-19 positive and negative patients, with the AI model trained to differentiate between the two. The results of the study 

showed promising findings, indicating that the AI model achieved high accuracy in detecting COVID-19 infection from chest 

X-ray images. It is suggested that the use of AI in this context could potentially assist healthcare professionals in the rapid triage 

and diagnosis of COVID-19 cases, particularly in regions with a high volume of cases and limited resources (Hamid, 

Muhammad, Iqbal, Nazir, et al., 2022). However, there are some limitations to different identification of COVID-19 studies. 

These include the relatively small sample size, the absence of external validation, and the retrospective nature of the analysis. 

The paper highlights the need for further research and validation to determine the generalizability and real-world applicability 

of AI in chest X-ray analysis for COVID-19 diagnosis. 

Overall, the study demonstrated the potential of AI, specifically deep learning models, in aiding the diagnosis of COVID-19 

infection using chest X-ray images. It provides an initial experience from Lombardy, Italy, which suggests that AI-based 

approaches could be valuable tools in supporting healthcare professionals during the COVID-19 pandemic. This epidemic's 

spread can be stopped because of the early detection of COVID. But the main issue is the limited supply of test kits. To tackle 

this, AI is useful and even used in COVID-19 identification and prediction. A model for COVID-19 detection from chest X-

rays using CheXNet, architecture accurately identified the COVID and normal binary classes with 99.9% accuracy. Applying 

the ChestXray14 dataset, the CNN network CheXNet was trained to look for anomalies in chest X-rays. The Authors widened 

their model, in general, to recognize each of the 14 diseases in the chestXray14 dataset (Hamid, Iqbal, Fuzail, Muhammad, 

Basit, et al., 2022). They employed Densenet121, a pre-trained version of it, in their model to distinguish COVID-19 from binary 

classes. With subsequent advancements, it was put into practice in real-time COVID-19 detection settings. An overall 

understanding of gathering data, processing it, choosing a model, training it, evaluating it, deploying, and ongoing improvement 

is needed to construct an ML-based software system for COVID-19 identification utilizing artificial intelligence with chest X-

ray imaging. It also needs access to a sizable database of chest X-ray pictures and diagnostic imaging and imaging knowledge. 

1) Data Collection: The first step in building an ML-based system for a sizable collection of X-ray images of the chest will be 

gathered for COVID-19 identification utilizing chest imaging.  

The transfer learning approach could be used to develop similar models for other medical imaging applications. It emphasizes 

the potential of transfer learning techniques for creating deep learning models for the processing of medical images and contends 

that these models could be crucial in the worldwide fight against the COVID-19 epidemic. 

Chest X-ray images have been the main source of data for several studies that implement artificial intelligence techniques for 

the disease's autonomous classification. Promising results have been made thus far in this area. In the most recent scholarly 
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literature, some issues were brought up by the automatic classification of COVID-19 using artificial intelligence approaches 

(Narayan Das et al., 2022). It can be difficult for radiologists to distinguish COVID-19 from CXR images. They must be aware 

of the typical patterns of the illness, which are frequently shared with other widespread pneumonia and lead to incorrect 

diagnoses. A more accurate method for illness identification is CT imaging. The data that have been revealed so far, in contrast 

to what has been suggested; seem to favor CXR over CT. A small number of COVID-19-positive CXR images are made openly 

accessible online for use by the scientific community. Most studies add negative images from other data sources to 

complete their data. Different sets of these images differ significantly from one another. When assessing using a subset of the 

original set of photos, produces exceptionally good outcomes for the automatic categorization of COVID-19. When assessing 

the trained models in their own sets, several studies find limited consistency to no generalization power. Even models developed 

by the use of preprocessing methods, which attempted to remove the biases inherent in the data sets, produced very modest 

results. As a result, the majority of findings to date, as published in the Scientific research, attribute models that notice the traits 

of the training sets. Since there is no good evaluation protocol, most of the developed models are still of limited use in clinical 

settings. 

While machine learning (ML)-based COVID detection systems have shown promise in aiding diagnosis and screening 

processes, several potential faults and limitations need to be considered. Some of the faults in ML-based COVID detection 

systems include: Limited training data is the main fault in the COVID-19 detection system. ML models require large and diverse 

datasets to learn effectively. In the case of COVID-19 detection, access to comprehensive and balanced datasets can be 

challenging, particularly during the early stages of a pandemic or in resource-constrained regions. Limited training data may 

lead to biases and inaccuracies in the ML model's predictions.  

 

3. Objective 

To emphasize the numerous architectural techniques now in use, this study concentrates on the ML-based software systems' 

architecture. In this paper, we address four essential components of software architecture that deserve the consideration of both 

ML and software practitioners to properly establish a common set of rules for creating ML-based software systems. Architectural 

framework, architectural process, self-adaptive architecture, and architectural evaluation fall under this category. 

3.1. The software architecture of ML-based system: Future challenges and opportunities 

To emphasize the numerous architectural techniques now in use, this section discusses four essential components of software 

architecture that should be taken into account by ML practitioners as well as software developers to appropriately construct a 

set of guidelines for developing ML-based software systems. We describe in detail what currently exists in each of these 

categories and what we think needs to be done in the future. These components have been derived based on architecting ML-

based software systems for addressing challenges in the COVID-19 detecting system. 

3.2. Architecture Framework 

When it comes to the architectural framework of a COVID-19 detection system, there can be several limitations. Here are some 

potential limitations that may arise: 

Data Availability and Quality are the major ones. The effectiveness of a COVID-19 detection system heavily relies on the 

availability and quality of data. Limited access to diverse and comprehensive datasets can limit the accuracy and generalizability 

of the system. Additionally, if the data used for training the system is flawed or biased, it can lead to inaccurate results and 

potential disparities in detecting COVID-19 cases. Architectural frameworks may face challenges in scaling up to accommodate 

large-scale COVID-19 testing requirements. As the number of tests increases, the system should be able to handle a higher 

volume of data, perform computations efficiently, and handle increased traffic. Scaling up the infrastructure and computational 

resources to meet the growing demand can be a significant challenge. No detection system is perfect, and there is always a 

chance of false positives (incorrectly identifying someone as positive) or false negatives (incorrectly identifying someone as 

negative). False positives may result in needless panic and strain on healthcare resources, while false negatives can result in 

infected individuals going undetected and potentially spreading the virus. Deep learning models used in architectural 

frameworks can be complex and lack interpretability. It can be difficult to comprehend the logic behind the system's decisions 

and identify the features contributing to the detection outcome. In critical scenarios like COVID-19, interpretability, and 

explainability are crucial to gain the trust of users, healthcare professionals, and regulatory bodies. Integrating a COVID-19 

detection system into existing healthcare infrastructure and workflows can be challenging. The system may need to integrate 

with electronic health records, laboratory information systems, and other healthcare software. Ensuring seamless deployment, 

compatibility, and interoperability with existing systems can be complex. Architectural frameworks must take ethical issues like 

data security, privacy, and informed permission into account. Collecting and storing sensitive health data raises concerns about 

privacy breaches and potential misuse. Proper safeguards should be in place to protect individuals' personal information and 

ensure compliance with relevant regulations and guidelines. COVID-19 has undergone several mutations, resulting in the 

emergence of different variants. The architectural framework should be adaptable and robust enough to detect these variants 

accurately. Keeping pace with the evolving nature of the virus and updating the system to detect new variants can be a continuous 

challenge. It is important to address these limitations while developing and implementing architectural frameworks for COVID-

19 detection systems to ensure their reliability, accuracy, and ethical considerations are properly addressed. In the field of 

COVID-19 identification utilizing X-ray imaging and machine learning, several architecture frameworks have been used. 

3.3. Existing Architecture Frameworks 

CNNs have been widely employed for COVID-19 detection from X-ray images (Memon et al., 2023). Architectures like 

VGGNet, ResNet, DenseNet, and InceptionNet have been utilized to extract features and classify images. Transfer learning has 

been extensively applied by leveraging models that have already been trained using massive datasets like ImageNet (Hamid, 

Iqbal, Fuzail, Muhammad, Basit, et al., 2022). Researchers fine-tune models like ResNet, InceptionNet, or EfficientNet on X-

ray images to detect COVID-19. Autoencoders, including convolutional variants, have been utilized to learn compressed 

representations of normal and COVID-19 X-ray images (Hamid, Iqbal, et al., 2023a). These learned representations can aid in 

classification tasks. RNNs, particularly Long Short-Term Memory (LSTM) networks, have been employed to capture temporal 

dependencies and analyze the progression of COVID-19 in X-ray images over time (Noaman et al., 2023). Ensemble models, 
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which combine multiple individual models (Hamid & Iqbal, 2022), have been explored to improve overall performance and 

robustness in COVID-19 detection. Ensemble techniques such as bagging, boosting, and stacking have been applied to CNNs 

or other architectures. 

Table 1 summarizes the limitations and benefits of various ML models based on different data types commonly used in COVID-

19 detection and medical diagnosis. It serves as a quick reference guide for researchers and healthcare professionals exploring 

ML-based approaches for COVID-19 detection and other medical diagnosis tasks. By understanding the limitations and benefits 

associated with each combination of data type and ML model, researchers can make informed decisions regarding model 

selection, data preprocessing, and potential trade-offs in accuracy and performance. However, it is essential to note that this 

table provides a generalized overview, and specific applications may require further investigation and validation based on the 

available data and research context. 

 

Table 1: Comparison of various ML models based on different data types 

Study Data Type 
ML Models and 

Techniques 
Limitations Benefits 

1 
Chest X-ray 

Images 

Convolutional Neural 

Networks (CNN) 

Limited spatial information in 

2D images, 

Potential biases, limited 

availability 

Fast processing for 

screening,  

 

2 
Chest X-ray 

Images 

Transfer Learning, 

DenseNet201 

Suffer from data bias and 

limited interpretability. 
High accuracy 

3 
Chest X-ray 

Images 
Deep Autoencoders 

May require large datasets for 

training 

Potential for improved 

accuracy 

4 
Chest X-ray 

Images 
GANs 

Introduce biases or produce 

unrealistic images 

Enable data augmentation 

and enhance the robustness 

 

5 CT Scans 
Convolutional Neural 

Networks (CNN) 
High radiation dose in CT scans 

Detailed imaging for 

accurate detection 

6 
 

Transfer Learning 
Costly and time-consuming 

imaging 

Efficient in severe and 

complex cases 

7  Deep Autoencoders Large data storage requirements 
Effective in detecting lung 

abnormalities 

8 
Clinical 

Notes 

Deep Learning 

Architectures (RNN, 

LSTM, Transformer) 

Unstructured and noisy text data 
Incorporate textual 

information 

9  Naive Bayes 
Difficult to extract relevant 

features 

Support early diagnosis and 

treatment 

10  SVM 
May require natural language 

processing 
Predict disease progression 

11 
Time Series 

Data 

Deep Learning 

Architectures (RNN, 

LSTM, Transformer) 

Irregular and missing data 

points 

Real-time monitoring and 

prediction 

12  SVM Sensitive to data preprocessing Identify temporal patterns 

13  Random Forest 
May need specialized handling 

methods 

Early detection of worsening 

condition 

14  
Gradient Boosting 

Machines (GBM) 

Computationally expensive and 

prone to overfitting 

High predictive accuracy and 

the ability to capture 

complex patterns 

15 
Clinical 

Features 
Decision Trees 

Limited features for complex 

scenarios 

Easily interpretable by 

healthcare professionals 

16  Naive Bayes May not capture subtle patterns 
Assist in risk assessment and 

prognosis 

17  SVM 
Incomplete representation of 

patients 

Facilitate personalized 

treatment plans 

18  Random Forest 

susceptibility to overfitting with 

noisy data and limited 

representation 

high accuracy and 

interpretable 

 

3.4. Future development 

Explainable Transfer Learning COVID-Net (ETL-COVID) is designed for COVID-19 detection from medical imaging data, 

such as chest X-rays or CT scans. The model leverages the benefits of transfer learning and incorporates explainability features 

to provide insights into its decision-making process, making it interpretable for healthcare professionals. 

3.5. Key Features of ETL-COVID 

• Transfer Learning: ETL-COVID uses transfer learning, a technique where a pre-trained deep learning model (usually 

trained on a large and diverse dataset, e.g., ImageNet) is adapted to a specific task with limited labeled data. By utilizing 

pre-trained weights, the model benefits from learned features from general medical image data, making it more data-

efficient and improving its performance. 

• CNN Architecture: ETL-COVID is built upon a Convolutional Neural Network (CNN) architecture. CNNs are known 
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for their ability to learn hierarchical features from images, enabling them to automatically extract relevant patterns and 

information from the input data. 

• Interpretability through Attention Mechanism: To achieve interpretability, ETL-COVID incorporates attention 

mechanisms, such as Grad-CAM (Gradient-weighted Class Activation Mapping). These mechanisms generate 

heatmaps that highlight the regions in the medical images that significantly influence the model's predictions. This 

provides visual explanations for why the model made a specific decision, increasing trust and understanding for 

clinicians. Here's a mathematical explanation of Grad-CAM: 

f: 𝑅𝐻×𝑊×𝐶 → 𝑅 be the CNN model used for COVID-19 detection, where H and W are the height and width of the 

input image, and C is the number of channels. The output of the last convolutional layer of the CNN is denoted as A, 

which is a H′×W′×K feature map, where  K is the number of filters in that layer. 

Grad-CAM aims to visualize the importance of different regions of the input image x concerning the model's final 

prediction f(x) by computing the gradient of the predicted class Yc concerning the feature maps A of the last 

convolutional layer: 

𝑎𝑘=
𝑐

1

𝑍
∑ 𝑖 ∑ 𝑗 

𝜕𝑦𝑐

𝜕𝐴𝑖𝑗
𝑘  

Where: 

• 𝑎𝑘
𝑐

  is the importance weight of the k-th feature map for the predicted class c. 

• Z is a normalization factor. 

• 
𝜕𝑦𝑐

𝜕𝐴𝑖𝑗
𝑘   represents the gradient of the predicted class score 𝑤𝑖𝑡ℎ respect to the activation value 𝐴𝑖𝑗

𝑘  in the k-th 

feature map. 

Next, Grad-CAM computes the class activation map 𝐿𝐺𝑟𝑎𝑑𝐶𝐴𝑀
𝑐   by performing a weighted combination of the feature 

maps A using the importance weights 𝑎𝑘
𝑐 : 

𝐿𝐺𝑟𝑎𝑑𝐶𝐴𝑀
𝑐   = 𝑅𝑒𝐿𝑈 (∑ 𝑎𝑘

𝑐 𝐴𝑘𝐾
𝑘=1  

Where 𝐴𝑘 k-th feature map in the last convolutional layer. 

Finally, Grad-CAM generates the heatmap 𝐻𝐺𝑟𝑎𝑑𝐶𝐴𝑀
𝑐  by upsampling the class activation map to the original input image 

size: 

𝐻𝐺𝑟𝑎𝑑𝐶𝐴𝑀
𝑐  = 𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑒 (𝐿𝐺𝑟𝑎𝑑𝐶𝐴𝑀 

𝑐 ) 

 

• Data Augmentation: To improve the model's robustness and reduce overfitting, ETL-COVID applies data augmentation 

techniques during training. This involves creating variations of the training images by applying transformations like 

rotation, scaling, and flipping, which diversifies the dataset and allows the model to learn from a more extensive range 

of variations. 

• Efficient Inference: ETL-COVID is designed for efficient inference, enabling real-time or near-real-time predictions. 

This allows it to be used in point-of-care scenarios, where quick and accurate COVID-19 detection is critical for patient 

management and public health measures. 

• Ensemble Approach: ETL-COVID can be part of an ensemble system that combines predictions from multiple models, 

each trained on different aspects of the data. Ensemble methods enhance the overall performance and robustness of the 

COVID-19 detection system. 

• Ethical Considerations: ETL-COVID prioritizes patient privacy and ethical considerations. It adheres to data 

anonymization and follows strict security protocols to protect sensitive patient information, ensuring compliance with 

privacy regulations. 

• Validation and Clinical Studies: ETL-COVID undergoes extensive validation and evaluation on diverse and real-world 

clinical datasets, representing different patient populations and imaging protocols. Rigorous clinical studies are 

conducted to assess its performance and effectiveness in detecting COVID-19. 

ETL-COVID aims to provide an accurate, interpretable, and efficient solution for COVID-19 detection, assisting healthcare 

professionals in making informed decisions and improving patient care during the ongoing pandemic. However, it's essential to 

recognize that the success of ETL-COVID and any other model depends on access to high-quality data and continuous research 

advancements in machine learning and medical imaging. 

 

4. Architecting Process 

As the technology and understanding of COVID-19 continue to evolve, the architecting process for these detection systems will 

likely undergo improvements and refinements. Here are some potential developments to look out for in each phase of the 

architecting process: 

What exists: Relevant X-ray images of COVID-19 patients and non-COVID-19 cases are collected from various sources. Data 

augmentation techniques may be applied to increase the diversity and size of the dataset. The collected data is preprocessed to 

enhance quality and remove noise. This may involve resizing images, normalizing pixel values, and applying filters or other 

image processing techniques. The appropriate ML architecture framework, such as CNNs or transfer learning models, is chosen 

based on the available data, computational resources, and performance requirements. According to Zhiyuan et al., the 

development of machine learning (ML) systems follows an iterative and incremental process. Initially, experiments are 

conducted to identify the most suitable algorithm or technique to fulfill specific requirements. This iterative approach often 

involves modifying the system's architecture to accommodate the chosen algorithm or technique. This could entail enhancing 

data collection mechanisms or adding additional components for pre-processing. Consequently, continuous collaboration 

between software architects, ML stakeholders (with a medical background), and software system stakeholders (with a 

programming background) is necessary. The divergent development methodologies and backgrounds of these teams can 

influence the various stages of the architecting process. 
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The selected model is trained on the preprocessed dataset. This involves splitting the data into training and validation sets, 

configuring hyperparameters, and optimizing the model using techniques like backpropagation and gradient descent. The trained 

model is evaluated using separate test data that was not used during training. Evaluation metrics such as accuracy, precision, 

recall, and F1 score are calculated to assess the model's performance. If the model's performance is not satisfactory, further 

iterations of training, hyperparameter tuning, or model architecture adjustments may be conducted to enhance its accuracy and 

generalization. The trained model is validated using independent datasets or external validation studies to assess its performance 

in real-world scenarios and compare it against existing approaches. Once the model demonstrates satisfactory performance, it 

can be deployed as part of a software system or integrated into existing healthcare infrastructure for practical use. Considerations 

like privacy, security, and regulatory compliance are taken into account during deployment. 

Potential development: It's important to note that the architecting process is iterative and may involve continuous 

improvements and updates as new research findings and technological advancements emerge. 

I. Architecture Design: Advancements in ML research may lead to the development of more specialized models for 

COVID-19 detection, tailored to handle specific data types (e.g., X-ray images, genomic data) and address particular 

challenges. Architecting may involve the design of ensemble models that combine the strengths of multiple ML models 

to improve overall accuracy and reliability in COVID-19 detection. COVID-19 detection systems may adopt domain-

specific architectures that incorporate domain knowledge from medical experts, virologists, and epidemiologists to 

enhance the model's performance. As new variants of the virus emerge, the architecture may be adapted to ensure 

effective detection, considering changes in image features or clinical presentations. 

II. Architecture Analysis: Architecture analysis will include evaluating ML models for potential biases and ensuring 

fairness in COVID-19 detection across different demographic groups to avoid disparities in healthcare outcomes. 

COVID-19 detection systems may incorporate techniques to estimate model uncertainty, providing more reliable and 

informative predictions, particularly in cases with limited or uncertain data. 

III. Architecture Realization: The realization phase will focus on developing ML-based COVID-19 detection systems 

that can scale to handle large volumes of data and deploy across various healthcare settings, including hospitals, clinics, 

and mobile health units. Realization may involve optimizing ML models for edge computing, enabling faster and 

decentralized COVID-19 testing and diagnosis. 

IV. Architecture Representation: An important outcome of the software architecting process is the creation of artifacts 

that can effectively communicate the system's architecture to relevant stakeholders.  

Given the sensitive nature of healthcare data, architecture processes may include compliance with regulations such as GDPR 

and HIPAA, as well as ethical considerations surrounding data usage, bias mitigation, and transparency. Future architecture 

processes may focus on the seamless integration of ML-based COVID-19 detection systems into the clinical workflow, ensuring 

usability, interoperability, and integration with electronic health records (EHR) systems. Ongoing research and advancements 

in the field will likely contribute to further enhancements in the accuracy, reliability, and real-world deployment of these 

systems. 

 

5. Self-adaptative architecture 

Self-adaptative architecture gives the system the capacity to autonomously adapt its architecture (with minimal human 

intervention) to manage the numerous types of uncertainties that may result in a deterioration or failure of the Quality of Service. 

The ability of a system to dynamically modify its architecture in response to shifting circumstances or requirements is known 

as self-adaptive architecting. Using X-ray imaging and machine learning for COVID-19 detection, self-adaptive architecting 

can significantly increase system performance and flexibility. Though particular applications of self-adaptive architecting 

methods may differ, the following are some current strategies and prospective advancements in this field: 

What exists: Since the phrase "Software Crisis" was first used in 1968 at the NATO Software Engineering Conference, the 

field of self-adaptive systems has developed over time [63]. Due to resource limitations, component failures, etc., modern 

software systems are prone to a variety of uncertainties. Self-adaptation, which enables the architectures to autonomously adapt 

to the various uncertainties to achieve the system's ultimate goals, has emerged throughout time as a potential remedy. Self-

adaptive systems have been the subject of a significant amount of literature research. Some studies offered a thorough assessment 

of the many methods for designing self-adaptive systems. Various papers have been published in the self-adaptation literature 

in recent years that employ machine learning methods to improve the adaptability of conventional software systems. 

Additionally, efforts have been made to modify machine learning methodologies to more effectively guarantee robustness. 

Based on variables like available resources, data features, and fluctuating performance requirements, the system can dynamically 

choose the best machine learning model for COVID-19 identification. As a result, the system can maximize detection accuracy 

and adjust to various conditions. The performance of a model can be greatly influenced by hyperparameters like regularization, 

batch size, and learning rate. The model's efficacy can be increased by automatically adjusting these hyperparameters based on 

real-time feedback through self-adaptive techniques like reinforcement learning or Bayesian optimization. Adaptive Data 

Preprocessing: Certain data preprocessing operations, such as filtering, normalization, and image scaling, can be modified by 

the unique properties of the input data. This guarantees that the X-ray images provide the most pertinent and appropriate data 

for the ML model. Runtime Configuration Adaptation: The system can modify its runtime configuration in response to several 

variables, including the availability of computational resources, network conditions, and processing speed requirements. To 

satisfy resource and performance limitations, the system, for instance, can optimize the inference process or dynamically modify 

the model's complexity. 

Potential Developments in Self-Adaptive Architecting: The efficacy, flexibility, and robustness of ML-based COVID-19 

detection systems may be improved by these prospective advancements in self-adaptive architecture. 

I. Architectural Adaptation by ML: This refers to applying ML methods to implement architectural adaptations. For 

example, the machine learning methods from the machine learning subsystem (Figure 1) can be used to predict the 

uncertainties that the software subsystem might experience (such as excessive CPU usage, malfunctions, etc.). It can 

also be used to choose the optimal adaptation approach for the design on its own. These tactics could include 
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rearranging the component behavior, altering the software subsystem's structure, etc. However, inaccurate uncertainty 

estimates or poor strategy selection might result in less-than-ideal or impractical adaptations, which may have an 

unintentional impact on how a system operates. Furthermore, these methods must account for the probabilistic character 

of machine learning processes, which may contribute to uncertainty. 

II. Architectural Adaptation for ML: The selection and use of the ML method affects the overall efficiency (response 

time, usage, etc.) of an ML-based software system. This is because the final model's complexity is determined by the 

algorithm chosen. For example, going back to the ML subsystem in Figure 1, we can tackle the same problem using 

multiple methods, which naturally yields different types of computationally complex models and offers different 

accuracy measurements. A more intricate deep learning technique could result in a more accurate and substantial model 

(such as one with multiple neural network layers). However, using the model may require additional CPU resources 

and processing time due to its density and increased number of number parameters, and software component(s) from 

the software subsystem Figure 1. On the other hand, employing a lighter model could provide better performance 

guarantees to the components that use it despite the loss of accuracy (e.g., reduced latency for creating a forecast and 

hence better response time). Different versions and types of ML models are generated at runtime throughout time by 

the ML subsystem using automated MLOps procedures. This would necessitate that the software subsystem uses 

techniques to automatically change between selecting ML models while taking the system's overall performance 

requirements into account. 

III. Architectural Adaptation of ML: Accuracy and learning bias are two issues that ML faces [13]. Furthermore, as a 

result of data fluctuations over time, machine learning models experience model degradation, which causes the 

accuracy to gradually decline. For example, the ML system (Figure 1) may be using ML models that are optimized for 

particular sorts of data. However, as Figure 1 shows, additional data also enters the system over time, which may 

indicate that the models' predictions begin to deteriorate as well. This behavior may cause the software subsystem's 

components that consume the model to behave erratically (for example, a recommendation system may begin to give 

the user ridiculous recommendations). To ensure robustness, this may necessitate modifying the design or behavior of 

the neural network or machine learning algorithm itself (e.g., dynamically changing the layers of a deep neural network, 

adapting hyperparameters, etc.). This will become increasingly important in the upcoming years, particularly with the 

rise in popularity of Software 2.0 [14], which calls for the autonomous design and implementation of software 

components through machine learning techniques. 

This suggests that more advanced methods will be needed: 

• Ensemble learning, combining the predictions of multiple models trained with different architectural configurations. 

The ensemble can adapt by giving more weight to the models that perform better on specific data or conditions. 

• Reinforcement learning techniques to adapt its hyperparameters, such as the architecture itself or the choice of pre-

trained models. RL agents can learn to make architectural choices that optimize the model's performance. 

Explainable Transfer Learning implements a learning rate scheduler that adjusts the learning rate during training. If the model's 

performance plateaus or deteriorates, the scheduler reduces the learning rate to allow the model to adapt more slowly. 

Conversely, if the model is learning quickly, the learning rate can be increased to speed up adaptation. It is designed to adapt its 

knowledge from a source domain (e.g., general medical images) to a target domain (COVID-19 cases) in real time. This 

adaptation can help the model respond to changes in the data distribution. ETL-COVID can incorporate reinforcement learning 

(RL) agents to optimize hyperparameters. These agents can autonomously explore different architectural configurations, 

regularization methods, and learning rates, adapting the model's architecture for improved performance. 

More advanced self-adaptive methods should be created and used as the field's research advances to meet the demands and 

difficulties of COVID-19 detection by X-ray imaging. Heatmaps are utilized to accurately and understandably convey forecasts 

of COVID-19 situations using an XAI method called LIME. To improve explainability, the suggested model is also expanded 

using the LIME and heatmap approaches. XAI technologies provide explainability and transparency, which aid non-expert end 

users in understanding the black box AI model. It gives the user feedback and explains, i.e., by giving more details and going 

all the way down to the inner workings of the black box AI mod. The researchers detected COVID-19 with extremely high 

accuracy by using edge fuzzy images based on Explainable artificial intelligence for detection and identification. They attain an 

accuracy of 0.95 utilizing quantization technology. Even though the researcher's COVID-19 detection accuracy, sensitivity, and 

specificity were good. With the hope that it may be improved upon to hasten research in this field, the analysis's goal is to present 

radiologists, data scientists, and the scientific community with a multi-input CNN model that may be used to detect COVID-19 

promptly. 

 

6. Architecture Evolution 

Architecture evolution is the process of continuously enhancing and changing a system's architecture through time through 

iterations. Architecture evolution is a critical component in improving the resilience, performance, and adaptability of the 

COVID-19 detection system when it comes to machine learning. An outline of current theories on the evolution of architecture 

and future directions for this field is provided below: 

What Exists: The literature on the evolution of software architecture has undergone a great deal of attention. The architecture 

of contemporary software systems, particularly ML-based software systems, is always changing. It is anticipated that the design 

of these systems will continuously change during runtime. This is mostly because as time goes on, more data becomes accessible 

along with the diffusion of improved and newer algorithms. The learning algorithm may need to be updated as a result of this 

procedure. Additionally, this could mean installing a new database or altering the existing one to accommodate the additional 

data, modifying software components since the ML component's interface has changed, and so forth. Furthermore, more 

sophisticated methods are needed to explore the limits of data and learning at each stage of the evolution. Additionally, disruptive 

events have the potential to alter the dynamics of the system, necessitating an upgrade or downgrade in previously obtained 

knowledge, or even the loss of utility. More investigation and discussion are needed on how these circumstances should be 

handled and how to satisfy both functional and non-functional requirements by resolving them. ML models that are employed 
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to detect COVID-19 may be frequently retrained or adjusted using fresh data (Hamid, Iqbal, et al., 2023b). The model may learn 

from additional samples of tagged X-ray pictures as they become available, allowing it to detect patterns better and improve 

detection accuracy.  

Potential Developments in Architecture Evolution: The data and model, dependent on the learning algorithm selected, are 

the main forces behind ML-based systems. The design of the entire system may need to adapt over time to accommodate any 

changes in requirements brought about by the data or algorithm to meet the overall requirements (Hamid, Aslam, et al., 2024). 

This raises two crucial points that should be taken into account: 

I. Data-induced evolution: In ML-based systems is a pivotal strategy for ensuring the continued relevance, 

accuracy, and adaptability of these systems in a dynamic and data-rich environment. It involves the seamless 

integration of new and diverse data sources, enabling the system to process a wide array of data types and formats. 

This approach not only enhances data quality and cleaning processes but also equips ML models with the ability 

to handle imbalanced datasets more effectively (Salahat et al., 2023). Adaptive learning and real-time learning 

mechanisms empower these systems to autonomously refine their performance, making them agile in responding 

to changing data patterns and insights. Importantly, data-induced evolution incorporates measures for data drift 

detection and adaptation, ensuring that ML models remain accurate as data distributions evolve (Hamid, 

Muhammad, Iqbal, Nazir, et al., 2022) (Hamid, Ayub, et al., 2024). This adaptability extends to the personalization 

of services, with ML systems tailoring their responses based on individual user behavior or unique data 

characteristics (Hamid, Iqbal, Nazir, Muhammad, et al., 2022). Collaboration, both on a global scale and with 

ethical considerations, is central to responsible evolution, while continuous model updates ensure that these 

systems remain at the forefront of knowledge and utility in their respective domains. 

II. ML Algorithm-induced evolution: Selecting the learning algorithm(s) to be utilized and the kind of model(s) 

that will be produced throughout the learning process is the second important component of any machine learning 

software system. Following architecture implementation, the machine learning component of the system often 

continues to produce new ML models regularly, contingent upon the availability of qualitative as well as 

quantitative information. Some common MLOps procedures are used to further deploy these models into 

production. To create more accurate or lighter models for performance, the learning algorithm may need to be 

adjusted over time. It might be necessary to change the model interface and gather additional data to achieve this. 

This can also necessitate changing the software's architecture to better meet the demands of the new learning 

algorithm. The evolution may encompass the integration of cutting-edge techniques, such as advanced 

optimization algorithms, novel loss functions, or state-of-the-art neural network architectures. Moreover, model 

interpretability methods can become more sophisticated, offering a deeper understanding of model decisions. Such 

algorithmic evolution ensures that ML systems can keep pace with the rapidly advancing field of machine learning 

and the ever-changing demands of data-driven applications, fostering a path to more accurate, efficient, and 

adaptable solutions (Hamid, Waseem Iqbal, Arif, Mahmood, et al., 2022). 

There will be an increasing focus on the models' interpretability and explainability when evaluating COVID-19 detection 

systems. Gaining the confidence of regulatory agencies and medical professionals requires explainable AI. Scholars must 

evaluate the degree of interpretability offered by ETL-COVID systems. Research will continue to improve performance metrics 

related to COVID-19 detection. Other metrics, such as the F1 score, area under the receiver operating characteristic curve (AUC-

ROC), and area under the precision-recall curve (AUC-PR), may be prioritized in addition to sensitivity, specificity, and 

accuracy. A crucial component of the evaluation will be how resilient the models are to changes in the distribution of data and 

how well they generalize to other populations. It will be crucial to use cross-validation methods that take into consideration 

various data splits and sources. The system's capacity to adjust to shifting data distributions, new viral strains, and changing 

medical procedures will be the main areas of assessment. Adaptability and strategies for continuous learning will be evaluated. 

Human-in-the-loop systems, such as ETL-COVID, may include input and interaction from healthcare professionals as a major 

part of the review process. These models of collaboration will be evaluated for efficacy. The assessment of COVID-19 detection 

systems may entail determining how well they adjust to various geographical conditions as well as how well international 

cooperation and data exchange enhance detection accuracy. Models such as ETL-COVID may require regulatory approval from 

agencies such as the FDA or CE marking. Compliance with medical device regulations will be part of the evaluation process.  

 

7. Conclusion 

The software architecture of ML-based systems has been the focus of our discussion in this work regarding the state of the 

software architecture of ML-based COVID-19 detection system. We think that future software architects' roles will shift from 

being simply another software architect to being ML-aware software architects based on the context of talks made in light of 

our experience designing an ML-based system. In essence, the architect's vision will not have a dividing boundary. There won't 

be any distinctions made at the design level between software and machine learning components, resulting in a more cohesive 

perspective. Instead, they will be seen as an additional component, similar to a data/event generator, data/event consumer, or 

model generator. Better architecting techniques can be achieved by using this perspective to help the architect understand an 

ML-based software system from the perspectives of software architecture and machine learning. We have suggested numerous 

paths in this work that will enable the community to make progress toward the achievement of this standard. The four topics we 

have examined in this study are based on our knowledge of designing the COVID-19 Detection system's ML-based software 

system. 
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