Advanced Technology and Analytical Methods for Assessing the Impact of Anticancer Drug Metabolites on Drug Efficacy and Toxicity

Authors

  • Shamim Akhtar National College of Business Administration and Economics, Pakistan Author
  • Shahbaz Hassan Mansoor University of Education Lahore, Multan Campus, Pakistan Author
  • Saima Batool Muhammad Nawaz Sharif University of Agricultural, Pakistan Author
  • Sumeet Dayyan University of Central Punjab, Lahore, Pakistan Author
  • Sania Akbar The Women University Multan, Pakistan Author

DOI:

https://doi.org/10.61506/01.00404

Keywords:

Anticancer drugs, metabolite analysis, high-resolution mass spectrometry, quantitative structure-activity relationship, Computational Modeling

Abstract

This study focuses on advancing the analysis of anticancer drug metabolites by integrating cutting-edge analytical and computational techniques. To improve the separation and identification of metabolites, we employ advanced chromatographic methods, including Ultra-Performance Liquid Chromatography (UPLC) coupled with high-resolution mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. These techniques provide enhanced resolution and accuracy in metabolite profiling. Computational approaches, such as molecular dynamics (MD) simulations and quantum mechanical (QM) calculations, are utilized to predict metabolic pathways and identify novel metabolites, while quantitative structure-activity relationship (QSAR) models assess biological activity and potential toxicity. The study reveals that Metabolite A exhibits high binding affinity and favorable reaction energy, suggesting its significant role in drug efficacy, whereas Metabolite B, despite lower binding affinity, shows higher potency and may contribute substantially to therapeutic effects. In contrast, Metabolite C, with the lowest binding affinity and less favorable reaction energy, presents potential safety concerns. This integrated methodology highlights the importance of combining advanced analytical techniques with computational models to optimize drug development and personalized medicine. The findings underscore the potential for improved therapeutic efficacy and safety in oncology through detailed metabolite analysis.

References

Ando, J., Yano, T.-a., Fujita, K., & Kawata, S. (2013). Metal nanoparticles for nano-imaging and nano-analysis. Physical Chemistry Chemical Physics, 15(33), 13713-13722. DOI: https://doi.org/10.1039/c3cp51806j

Chen, L., Wu, Q., Gao, J., Li, H., Dong, S., Shi, X., & Zhao, L. (2019). Applications of covalent organic frameworks in analytical chemistry. TrAC Trends in Analytical Chemistry, 113, 182-193. DOI: https://doi.org/10.1016/j.trac.2019.01.016

Choi, J. R. (2020). Development of point-of-care biosensors for COVID-19. Frontiers in chemistry, 8, 517. DOI: https://doi.org/10.3389/fchem.2020.00517

Foroutan, A., Guo, A. C., Vazquez-Fresno, R., Lipfert, M., Zhang, L., Zheng, J., Badran, H., Budinski, Z., Mandal, R., & Ametaj, B. N. (2019). Chemical composition of commercial cow’s milk. Journal of agricultural and food chemistry, 67(17), 4897-4914. DOI: https://doi.org/10.1021/acs.jafc.9b00204

Guengerich, F. P. (2008). Cytochrome p450 and chemical toxicology. Chemical research in toxicology, 21(1), 70-83. DOI: https://doi.org/10.1021/tx700079z

Horsfall, J. P., Trivedi, D., Smith, N. T., Martin, P. A., Coffey, P., Tournier, S., Banford, A., Li, L., Whitehead, D., & Lang, A. (2019). A new analysis workflow for discrimination of nuclear grade graphite using laser-induced breakdown spectroscopy. Journal of environmental radioactivity, 199, 45-57. DOI: https://doi.org/10.1016/j.jenvrad.2019.01.004

Jørgensen, J., Schöier, F., & Van Dishoeck, E. (2004). Molecular inventories and chemical evolution of low-mass protostellar envelopes. Astronomy & Astrophysics, 416(2), 603-622. DOI: https://doi.org/10.1051/0004-6361:20034440

Jørgensen, J. K., Favre, C., Bisschop, S. E., Bourke, T. L., Van Dishoeck, E. F., & Schmalzl, M. (2012). Detection of the simplest sugar, glycolaldehyde, in a solar-type protostar with ALMA. The Astrophysical Journal Letters, 757(1), L4. DOI: https://doi.org/10.1088/2041-8205/757/1/L4

Makarov, A., Denisov, E., Kholomeev, A., Balschun, W., Lange, O., Strupat, K., & Horning, S. (2006). Performance evaluation of a hybrid linear ion trap/orbitrap mass spectrometer. Analytical Chemistry, 78(7), 2113-2120. DOI: https://doi.org/10.1021/ac0518811

Ochoa-Vazquez, G., Kharisov, B., Arizmendi-Morquecho, A., Cario, A., Aymonier, C., Marre, S., & López, I. (2019). Microfluidics and surface-enhanced Raman spectroscopy: A perfect match for new analytical tools. IEEE Transactions on NanoBioscience, 18(4), 558-566. DOI: https://doi.org/10.1109/TNB.2019.2943078

Ochoa, G. (2022). Microfluidic synthesis and assembly of noble metal nanoparticles for surface-enhanced vibrational spectroscopies Université de Bordeaux; Universidad autónoma de Nuevo León].

Ochoa, G. S., Prebihalo, S. E., Reaser, B. C., Marney, L. C., & Synovec, R. E. (2020). Statistical inference of mass channel purity from Fisher ratio analysis using comprehensive two-dimensional gas chromatography with time of flight mass spectrometry data. Journal of Chromatography A, 1627, 461401. DOI: https://doi.org/10.1016/j.chroma.2020.461401

Peng, H., Newbigging, A. M., Wang, Z., Tao, J., Deng, W., Le, X. C., & Zhang, H. (2018). DNAzyme-mediated assays for amplified detection of nucleic acids and proteins. Analytical Chemistry, 90(1), 190-207. DOI: https://doi.org/10.1021/acs.analchem.7b04926

Peng, X., Liang, W.-B., Wen, Z.-B., Xiong, C.-Y., Zheng, Y.-N., Chai, Y.-Q., & Yuan, R. (2018). Ultrasensitive fluorescent assay based on a rolling-circle-amplification-assisted multisite-strand-displacement-reaction signal-amplification strategy. Analytical Chemistry, 90(12), 7474-7479. DOI: https://doi.org/10.1021/acs.analchem.8b01015

Rand, K. D., Zehl, M., Jensen, O. N., & Jørgensen, T. J. (2009). Protein hydrogen exchange measured at single-residue resolution by electron transfer dissociation mass spectrometry. Analytical Chemistry, 81(14), 5577-5584. DOI: https://doi.org/10.1021/ac9008447

Smith, D. F., Podgorski, D. C., Rodgers, R. P., Blakney, G. T., & Hendrickson, C. L. (2018). 21 tesla FT-ICR mass spectrometer for ultrahigh-resolution analysis of complex organic mixtures. Analytical Chemistry, 90(3), 2041-2047. DOI: https://doi.org/10.1021/acs.analchem.7b04159

Smith, J. P., Metters, J. P., Khreit, O. I., Sutcliffe, O. B., & Banks, C. E. (2014). Forensic electrochemistry applied to the sensing of new psychoactive substances: Electroanalytical sensing of synthetic cathinones and analytical validation in the quantification of seized street samples. Analytical Chemistry, 86(19), 9985-9992. DOI: https://doi.org/10.1021/ac502991g

Sudheeshna, M., Malarvannan, M., Kumar, K. V., Kumar, G. K., & Reddy, Y. P. (2023). 2D Chromatography and 2D Spectroscopy in Analytical Chemistry: an Overview. Journal of Analytical Chemistry, 78(9), 1213-1230. DOI: https://doi.org/10.1134/S1061934823090149

Wishart, D. S. (2011). Advances in metabolite identification. Bioanalysis, 3(15), 1769-1782. DOI: https://doi.org/10.4155/bio.11.155

Wishart, D. S., Hiebert-Giesbrecht, M., Inchehborouni, G., Cao, X., Guo, A. C., LeVatte, M. A., Torres-Calzada, C., Gautam, V., Johnson, M., & Liigand, J. (2024). Chemical composition of commercial cannabis. Journal of agricultural and food chemistry. DOI: https://doi.org/10.1021/acs.jafc.3c06616

Zheng, J., Zhang, L., Johnson, M., Mandal, R., & Wishart, D. S. (2020). Comprehensive targeted metabolomic assay for urine analysis. Analytical Chemistry, 92(15), 10627-10634. DOI: https://doi.org/10.1021/acs.analchem.0c01682

Zhou, Y., Sun, L., Watanabe, S., & Ando, T. (2021). Recent advances in the glass pipet: from fundament to applications. Analytical Chemistry, 94(1), 324-335. DOI: https://doi.org/10.1021/acs.analchem.1c04462

Downloads

Published

2024-06-01

Issue

Section

Articles

How to Cite

Akhtar, S. ., Mansoor, S. H. ., Batool, S. ., Dayyan, S. ., & Akbar, S. . (2024). Advanced Technology and Analytical Methods for Assessing the Impact of Anticancer Drug Metabolites on Drug Efficacy and Toxicity. Bulletin of Business and Economics (BBE), 13(2), 884-892. https://doi.org/10.61506/01.00404