QUANTITATIVE STUDIES OF DEEP REINFORCEMENT LEARNING IN GAMING, ROBOTICS AND REAL-WORLD CONTROL SYSTEMS
DOI:
https://doi.org/10.61506/01.00019Keywords:
Deep Reinforcement Learning, Gaming Applications,, Robotics and Real-World Control SystemsAbstract
Deep Reinforcement Learning (DRL) has emerged as a transformative paradigm with profound implications for gaming, robotics, real-world control systems, and beyond. This quantitative analysis delves into the applications of DRL across these domains, assessing its capabilities, challenges, and potential. In the gaming realm, we showcase DRL's prowess through significant score improvements in benchmark games, with DQN and PPO leading the way. A3C underscores its adaptability through strong generalization within the gaming domain. While specific robotics and real-world control results are not presented here, their promise in enhancing task completion and precision is evident. Sample efficiency and safety strategies address critical concerns, demonstrating DRL's capacity to optimize resource utilization and ensure robustness. Generalization and transfer learning underscore DRL's adaptability to new scenarios. While these findings are not empirical but illustrative, they emphasize DRL's versatility and highlight the need for continued research to unlock its full potential in addressing complex real-world challenges.
References
Acuto, A., Barillà, P., Bozzolo, L., Conterno, M., Pavese, M., & Policicchio, A. (2022). Variational quantum soft actor-critic for robotic arm control. arXiv preprint arXiv:2212.11681.
Camurri, M., Ramezani, M., Nobili, S., & Fallon, M. (2020). Pronto: A multi-sensor state estimator for legged robots in real-world scenarios. Frontiers in Robotics and AI, 7, 68. DOI: https://doi.org/10.3389/frobt.2020.00068
Crosato, L., Shum, H. P., Ho, E. S., & Wei, C. (2022). Interaction-aware decision-making for automated vehicles using social value orientation. IEEE Transactions on Intelligent Vehicles, 8(2), 1339-1349. DOI: https://doi.org/10.1109/TIV.2022.3189836
ElDahshan, K. A., Farouk, H., & Mofreh, E. (2022). Deep Reinforcement Learning based Video Games: A Review. Paper presented at the 2022 2nd International Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC). DOI: https://doi.org/10.1109/MIUCC55081.2022.9781752
Hemmati, A., & Rahmani, A. M. (2022). The Internet of Autonomous Things applications: A taxonomy, technologies, and future directions. Internet of Things, 20, 100635. DOI: https://doi.org/10.1016/j.iot.2022.100635
Hickling, T., Zenati, A., Aouf, N., & Spencer, P. (2022). Explainability in Deep Reinforcement Learning, a Review into Current Methods and Applications. arXiv preprint arXiv:2207.01911. DOI: https://doi.org/10.1145/3623377
Hu, Z., Liu, H., Xiong, Y., Wang, L., Wu, R., Guan, K., . . . Fan, C. (2023). Promoting human-AI interaction makes a better adoption of deep reinforcement learning: a real-world application in game industry. Multimedia Tools and Applications, 1-22. DOI: https://doi.org/10.1007/s11042-023-15361-6
Jayaramireddy, C. S., Naraharisetti, S. V. V. S. S., Nassar, M., & Mekni, M. (2022). A survey of reinforcement learning toolkits for gaming: applications, challenges and trends. Paper presented at the Proceedings of the Future Technologies Conference. DOI: https://doi.org/10.1007/978-3-031-18461-1_11
Jiang, C. (2020). Analysis of artificial intelligence applied in video games. Paper presented at the 2020 International Conference on Artificial Intelligence and Computer Engineering (ICAICE). DOI: https://doi.org/10.1109/ICAICE51518.2020.00033
Kopacz, J., Roney, J., & Herschitz, R. (2021). Deep replacement: Reinforcement learning based constellation management and autonomous replacement. Engineering Applications of Artificial Intelligence, 104, 104316. DOI: https://doi.org/10.1016/j.engappai.2021.104316
Lee, D., Lee, S., Masoud, N., Krishnan, M., & Li, V. C. (2022). Digital twin-driven deep reinforcement learning for adaptive task allocation in robotic construction. Advanced Engineering Informatics, 53, 101710. DOI: https://doi.org/10.1016/j.aei.2022.101710
Lei, L., Tan, Y., Zheng, K., Liu, S., Zhang, K., & Shen, X. (2020). Deep reinforcement learning for autonomous internet of things: Model, applications and challenges. IEEE Communications Surveys & Tutorials, 22(3), 1722-1760. DOI: https://doi.org/10.1109/COMST.2020.2988367
Li, C., Zheng, P., Yin, Y., Wang, B., & Wang, L. (2023). Deep reinforcement learning in smart manufacturing: A review and prospects. CIRP Journal of Manufacturing Science and Technology, 40, 75-101. DOI: https://doi.org/10.1016/j.cirpj.2022.11.003
Liu, R., Nageotte, F., Zanne, P., de Mathelin, M., & Dresp-Langley, B. (2021). Deep reinforcement learning for the control of robotic manipulation: a focussed mini-review. Robotics, 10(1), 22. DOI: https://doi.org/10.3390/robotics10010022
Liu, Y., Li, Z., Liu, H., & Kan, Z. (2020). Skill transfer learning for autonomous robots and human–robot cooperation: A survey. Robotics and Autonomous Systems, 128, 103515. DOI: https://doi.org/10.1016/j.robot.2020.103515
Mazumder, A., Sahed, M., Tasneem, Z., Das, P., Badal, F., Ali, M., . . . Das, S. (2023). Towards next generation digital twin in robotics: Trends, scopes, challenges, and future. Heliyon. DOI: https://doi.org/10.1016/j.heliyon.2023.e13359
Mosavi, A., Faghan, Y., Ghamisi, P., Duan, P., Ardabili, S. F., Salwana, E., & Band, S. S. (2020). Comprehensive review of deep reinforcement learning methods and applications in economics. Mathematics, 8(10), 1640. DOI: https://doi.org/10.3390/math8101640
Nalmpantis, A. (2020). Deep Reinforcement Learning For Trading In Financial Markets.
Nguyen, T.-V., Nguyen, N. P., Kim, C., & Dao, N.-N. (2023). Intelligent aerial video streaming: Achievements and challenges. Journal of Network and Computer Applications, 211, 103564. DOI: https://doi.org/10.1016/j.jnca.2022.103564
Nguyen, T. T., & Reddi, V. J. (2021). Deep reinforcement learning for cyber security. IEEE Transactions on Neural Networks and Learning Systems.
Rupprecht, T., & Wang, Y. (2022). A survey for deep reinforcement learning in markovian cyber–physical systems: Common problems and solutions. Neural Networks, 153, 13-36. DOI: https://doi.org/10.1016/j.neunet.2022.05.013
Souchleris, K., Sidiropoulos, G. K., & Papakostas, G. A. (2023). Reinforcement Learning in Game Industry—Review, Prospects and Challenges. Applied Sciences, 13(4), 2443. DOI: https://doi.org/10.3390/app13042443
Tao, L., Zhang, J., Bowman, M., & Zhang, X. (2023). A Multi-Agent Approach for Adaptive Finger Cooperation in Learning-based In-Hand Manipulation. Paper presented at the 2023 IEEE International Conference on Robotics and Automation (ICRA). DOI: https://doi.org/10.1109/ICRA48891.2023.10160909
Whittlestone, J., Arulkumaran, K., & Crosby, M. (2021). The societal implications of deep reinforcement learning. Journal of Artificial Intelligence Research, 70, 1003–1030-1003–1030. DOI: https://doi.org/10.1613/jair.1.12360
Ye, Y., Qiu, D., Wu, X., Strbac, G., & Ward, J. (2020). Model-free real-time autonomous control for a residential multi-energy system using deep reinforcement learning. IEEE Transactions on Smart Grid, 11(4), 3068-3082. DOI: https://doi.org/10.1109/TSG.2020.2976771
Zheng, Y., Xie, X., Su, T., Ma, L., Hao, J., Meng, Z., . . . Fan, C. (2019). Wuji: Automatic online combat game testing using evolutionary deep reinforcement learning. Paper presented at the 2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE). DOI: https://doi.org/10.1109/ASE.2019.00077