Convergence Hypothesis and Economic Growth in ECO Countries: An Insight from MM-QR Approach
DOI:
https://doi.org/10.61506/01.00213Keywords:
GDP growth, Gross fixed capital formation, Secondary school enrollment, Life expectancy, Effective rate of deprecationAbstract
This study assesses the convergence hypothesis and economic growth in ECO countries spanning from 1990 to 2021. Employing the MM-QR technique, it investigates the relationship between various factors and GDP growth. The study incorporates gross fixed capital formation, life expectancy, the effective rate of depreciation, secondary school enrollment, and the initial logarithm of GDP per capita as independent variables, with GDP growth as the dependent variable. Two distinct measures are employed: absolute convergence and relative convergence. Absolute convergence analysis reveals a positive and statistically significant trend. It indicates that poorer nations are experiencing higher growth rates compared to their wealthier counterparts. Moreover, the study investigates sigma convergence, explaining that the standard deviation of per capita income during the first and second decades signifies the existence of sigma convergence. However, during the third decade, although sigma convergence persists, it lies between the levels observed in the first and second decades. The study points out the significance of implementing pertinent policies to bolster GDP growth. It emphasizes the need for targeted strategies aimed at fostering economic development within the ECO countries.
References
th International Conference, The Economies of Balkan and Eastern Europe Countries in the changed world, EBEEC 2015, May 8-10, 2015
Abdullah, M., Shoukat, A., & Mahmood, H. (2021). CPEC: Analyzing the Mediating Role of Infrastructure for Regional Economic Integration. Bulletin of Business and Economics (BBE), 10(3), 8-16.
Ali, A., Hasan, Z. U., Abbasi, Q., & Sulehri, F. A. (2023). Business or Politics: Exploring the Determinants of Policy Mix in South Asia. Bulletin of Business and Economics (BBE), 12(3), 114-123. DOI: https://doi.org/10.61506/01.00001
Altıntaş, H., & Kassouri, Y. (2020). Is the environmental Kuznets Curve in Europe related to the per-capita ecological footprint or CO2 emissions?. Ecological indicators, 113, 106187. DOI: https://doi.org/10.1016/j.ecolind.2020.106187
Audi, M., Poulin, M., & Ali, A. (2023). Determinants of Human Wellbeing and its Prospect Under the Role of Financial Inclusion in South Asian Countries. Journal of Applied Economic Sciences, 18(4).
Bai, C., Feng, C., Du, K., Wang, Y., & Gong, Y. (2020). Understanding spatial-temporal evolution of renewable energy technology innovation in China: Evidence from convergence analysis. Energy Policy, 143, 111570. DOI: https://doi.org/10.1016/j.enpol.2020.111570
Bersvendsen, T., & Ditzen, J. (2020). Xthst: Testing for slope homogeneity in Stata. Stata J. DOI: https://doi.org/10.1177/1536867X211000004
Bhattacharya, M., Inekwe, J. N., & Sandusky, P. (2020). Convergence of energy productivity in Australian states and territories: determinants and forecasts. Energy economics, 85, 104538. DOI: https://doi.org/10.1016/j.eneco.2019.104538
Bonnefond, C. (2014). Growth dynamics and conditional convergence among Chinese provinces: a panel data investigation using system GMM estimator. Journal of Economic Development, 39(4), 1. DOI: https://doi.org/10.35866/caujed.2014.39.4.001
Butnaru, G. I., Haller, A. P., Clipa, R. I., Ștefănică, M., & Ifrim, M. (2020). The nexus between convergence of conventional and renewable energy consumption in the present European Union states. Explorative study on parametric and semi-parametric methods. Energies, 13(20), 5272. DOI: https://doi.org/10.3390/en13205272
Churchill, S. A., Inekwe, J., & Ivanovski, K. (2020). Stochastic convergence in per capita CO2 emissions: evidence from emerging economies, 1921–2014. Energy economics, 86, 104659.
Churchill, S. A., Inekwe, J., & Ivanovski, K. (2020). Stochastic convergence in per capita CO2 emissions: evidence from emerging economies, 1921–2014. Energy economics, 86, 104659. DOI: https://doi.org/10.1016/j.eneco.2019.104659
Delgado, M., Porter, M. E., & Stern, S. (2014). Clusters, convergence, and economic performance. Research policy, 43(10), 1785-1799. DOI: https://doi.org/10.1016/j.respol.2014.05.007
Dowrick, S., & Nguyen, D. T. (1989). OECD comparative economic growth 1950-85: catch-up and convergence. The American economic Review, 1010-1030.
Fung, M. K. (2009). Financial development and economic growth: convergence or divergence?. Journal of international money and finance, 28(1), 56-67. DOI: https://doi.org/10.1016/j.jimonfin.2008.08.001
Gaulier, G., Hurlin, C., & Jean-Pierre, P. (1999). Testing convergence: A panel data approach. Annales d'Économie et de Statistique, 411-427. DOI: https://doi.org/10.2307/20076205
Gömleksiz, M., Şahbaz, A., & Mercan, B. (2017). Regional economic convergence in Turkey: Does the government really matter for?. Economies, 5(3), 27. DOI: https://doi.org/10.3390/economies5030027
Haller, A. P., Butnaru, G. I., Hârșan, G. D. T., & Ştefănică, M. (2021). The relationship between tourism and economic growth in the EU-28. Is there a tendency towards convergence?. Economic Research-Ekonomska Istraživanja, 34(1), 1121-1145. DOI: https://doi.org/10.1080/1331677X.2020.1819852
Hussain, B., Rizwan, M., & Anwar, S. Estimating Convergence (and Divergence) among Developing, Emerging and Developed Economies.
Iqbal, Z., & Zahid, G. M. (1998). Macroeconomic determinants of economic growth in Pakistan. The Pakistan Development Review, 125-148. DOI: https://doi.org/10.30541/v37i2pp.125-148
Kaitila, V. (2004). Integration and conditional convergence in the enlarged EU area (No. 935). ETLA Discussion Papers.
Karagiannis, S. (2007). The knowledge-based economy, convergence and economic growth: Evidence from the European Union. The Journal of Economic Asymmetries, 4(2), 65-85. DOI: https://doi.org/10.1016/j.jeca.2007.02.005
Karhan, G. (2017). Investing in Research and Development for Technological Innovation: A Strategy for Turkey’s Economic Growth. Journal of Business and Economic Options, 4(4), 65-71.
Lall, S. V., & Yilmaz, S. (2001). Regional economic convergence: Do policy instruments make a difference?. The annals of regional science, 35(1), 153-166. DOI: https://doi.org/10.1007/s001680000035
Li, W., Zhao, T., Wang, Y., Zheng, X., & Yang, J. (2019). How does foreign direct investment influence energy intensity convergence in China? Evidence from prefecture-level data. Journal of cleaner production, 219, 57-65. DOI: https://doi.org/10.1016/j.jclepro.2019.02.025
Li, Y., Wang, J., & Oh, K. (2022). Effects of Globalization on the Convergence of Poverty Levels among Asian Countries. International Economic Journal, 1-13. DOI: https://doi.org/10.1080/10168737.2022.2052742
Malik, F. (2017). Exchange Rate Regimes and Economic Dynamics: Insights from Pakistan. Journal of Business and Economic Options, 4(3), 55-64.
Michelis, L., Papadopoulos, A. P., & Papanikos, G. T. (2004). Regional convergence in Greece in the 1980s: an econometric investigation. Applied Economics, 36(8), 881-888. DOI: https://doi.org/10.1080/0003684042000191093
Nahar, S., & Inder, B. (2002). Testing convergence in economic growth for OECD countries. Applied Economics, 34(16), 2011-2022. DOI: https://doi.org/10.1080/00036840110117837
Neven, D., & Gouymte, C. (1995). Regional convergence in the European Community. JCMS: Journal of Common Market Studies, 33(1), 47-65. DOI: https://doi.org/10.1111/j.1468-5965.1995.tb00516.x
Orphanides, A., & Norden, S. V. (2002). The unreliability of output-gap estimates in real time. Review of economics and statistics, 84(4), 569-583. DOI: https://doi.org/10.1162/003465302760556422
Pedroni, P. (1999). Critical values for cointegration tests in heterogeneous panels with multiple regressors. Oxford Bulletin of Economics and statistics, 61(S1), 653-670. DOI: https://doi.org/10.1111/1468-0084.61.s1.14
Pesaran, M. H. (2015). Testing weak cross-sectional dependence in large panels. Econometric reviews, 34(6-10), 1089-1117. DOI: https://doi.org/10.1080/07474938.2014.956623
Pesaran, M. H., & Yamagata, T. (2008). Testing slope homogeneity in large panels. Journal of econometrics, 142(1), 50-93. DOI: https://doi.org/10.1016/j.jeconom.2007.05.010
Pesaran, M. H., Ullah, A., & Yamagata, T. (2008). A bias‐adjusted LM test of error cross‐section independence. The econometrics journal, 11(1), 105-127.
Pesaran, M. H., Ullah, A., & Yamagata, T. (2008). A bias‐adjusted LM test of error cross‐section independence. The econometrics journal, 11(1), 105-127. DOI: https://doi.org/10.1111/j.1368-423X.2007.00227.x
Rapacki, R., & Próchniak, M. (2009). Real beta and sigma convergence in 27 transition countries, 1990–2005. Post-Communist Economies, 21(3), 307-326. DOI: https://doi.org/10.1080/14631370903090616
Sharma, R. (2018). Health and economic growth: Evidence from dynamic panel data of 143 years. PloS one, 13(10), e0204940. DOI: https://doi.org/10.1371/journal.pone.0204940
Sun, H., Kporsu, A. K., Taghizadeh-Hesary, F., & Edziah, B. K. (2020). Estimating environmental efficiency and convergence: 1980 to 2016. Energy, 208, 118224. DOI: https://doi.org/10.1016/j.energy.2020.118224
Unal, U. (2014). Economic Growth and Convergence across the OIC Countries.
Wang, S. L., Huang, J., Wang, X., & Tuan, F. (2019). Are China’s regional agricultural productivities converging: How and why?. Food Policy, 86, 101727. DOI: https://doi.org/10.1016/j.foodpol.2019.05.010
Westerlund, J., Hosseinkouchack, M., & Solberger, M. (2016). The local power of the CADF and CIPS panel unit root tests. Econometric Reviews, 35(5), 845-870. DOI: https://doi.org/10.1080/07474938.2014.977077
Zhang, H., Geng, Z., Yin, R., & Zhang, W. (2020). Regional differences and convergence tendency of green development competitiveness in China. Journal of Cleaner Production, 254, 119922. DOI: https://doi.org/10.1016/j.jclepro.2019.119922
Zhao, X., Zhang, X., Li, N., Shao, S., & Geng, Y. (2017). Decoupling economic growth from carbon dioxide emissions in China: a sectoral factor decomposition analysis. Journal of Cleaner Production, 142, 3500-3516. DOI: https://doi.org/10.1016/j.jclepro.2016.10.117