Integrating Qualitative and Quantitative Approaches: The Impact of AI Design on Consumer Perception and Buying Behavior in the FMCG Sector

Authors

  • Muhammad Waqas Farooq Ph.D. Scholar, Business and Management Sciences Department, Superior University, Lahore, Pakistan Author
  • Dr. Khawaja Hisham Ul Hassan Associate Professor, Faculty of Economics and Commerce, Superior University, Lahore, Pakistan Author
  • Faiza Nawaz M.Phil, Business and Management Sciences Department, Superior University, Lahore, Pakistan Author

DOI:

https://doi.org/10.61506/01.00393

Keywords:

AI designs, consumer perception, consumer buying behavior, consumer literacy, FMCG sector

Abstract

The motivation behind this examination is to explore the relationship between AI designs, consumer perception, consumer buying behaviour, and consumer literacy in Pakistan's fast-moving consumer goods (FMCG). To apply ethnography to research the consumer’s buying behaviour in the context of AI designs in the FMCG Sector. This study used the mixed-method approach, a quantitative exploration plan and utilised a survey method to collect data from 250 FMCG sector consumers in Lahore via an online self-administered survey. The paper applied SEM to examine the hypotheses and analyze the data. The qualitative portion used eight in-depth semi-structured interviews for data collection. The paper found that AI designs affected consumer perception (CP), consumer perception (CP) affected by consumer buying behaviour (CBB), and CP intervened in the impact of AI designs on CBB. Consumer literacy (CL) is moderated between consumer perception (CP) and consumer buying behaviour (CBB). The findings also reveal the positive impact of AI on consumer buying behaviour, through individual perspectives. The study adds to the works on the link between AI designs, CP, CBB, and CL in the FMCG business. It gives experimental proof to help the hypotheses that AI designs influence CP, CP influences CBB, and CP explains the impact of AI designs on CBB, CL moderated between CP and CBB.  AI designs can enhance consumer perception and buying behaviour of FMCG products, leading to higher market performance and customer satisfaction. FMCG companies can use AI to innovate, customize, and educate their products and services for different consumer segments. The research aims to identify the association between AI designs, CP, CBB and CL in the FMCG industry. It offers an original viewpoint on how AI designs can improve CP, how CP can prompt CBB, and how consumer literacy is moderated between CP and CBB in the fast-moving consumer goods business.

References

Agrawal, A., Gans, J., & Goldfarb, A. (2018). Prediction, judgment, and complexity: a theory of decision-making and artificial intelligence. In The economics of artificial intelligence: An agenda (pp. 89-110). University of Chicago Press. DOI: https://doi.org/10.3386/w24243

Alabed, A., Javornik, A., & Gregory-Smith, D. (2022). AI anthropomorphism and its effect on users' self-congruence and self–AI integration: A theoretical framework and research agenda. Technological Forecasting and Social Change, 182, 121786. DOI: https://doi.org/10.1016/j.techfore.2022.121786

Ali, F., Rasoolimanesh, S. M., Sarstedt, M., Ringle, C. M., & Ryu, K. (2018). An assessment of the use of partial least squares structural equation modelling (PLS-SEM) in hospitality research. International journal of contemporary hospitality management, 30(1), 514-538. DOI: https://doi.org/10.1108/IJCHM-10-2016-0568

Avkiran, N. K. (2018). An in-depth discussion and illustration of partial least squares structural equation modelling in health care. Health care management science, 21, 401-408. DOI: https://doi.org/10.1007/s10729-017-9393-7

Aytekin, P., Virlanuta, F. O., Guven, H., Stanciu, S., & Bolakca, I. (2021). Consumers Perception Of Risk Towards Artificial Intelligence Technologies Used In Trade: A Scale Development Study. Amfiteatru Economic, 23(56), 65-86. DOI: https://doi.org/10.24818/EA/2021/56/65

Bagga, T., & Bhatt, M. (2013). A study of intrinsic and extrinsic factors influencing consumer buying behaviour online. Asia-Pacific Journal of Management Research and Innovation, 9(1), 77-90. DOI: https://doi.org/10.1177/2319510X13483515

Bawack, R. E., Fosso Wamba, S., & Carillo, K. D. A. (2021). A framework for understanding artificial intelligence research: insights from practice. Journal of Enterprise Information Management, 34(2), 645-678. DOI: https://doi.org/10.1108/JEIM-07-2020-0284

Beaudoin, C., Leblanc, É., Gagner, C., & Beauchamp, M. H. (2020). Systematic review and inventory of theory of mind measures for young children. Frontiers in Psychology, 10, 2905. DOI: https://doi.org/10.3389/fpsyg.2019.02905

Beeler, L., Zablah, A. R., & Rapp, A. (2022). Ability is in the eye of the beholder: How context and individual factors shape consumer perceptions of digital assistant ability. Journal of Business Research, 148, 33-46. DOI: https://doi.org/10.1016/j.jbusres.2022.04.045

Bergemann, D., & Bonatti, A. (2019). The economics of social data: An introduction. DOI: https://doi.org/10.2139/ssrn.3459793

Blackwell, R. D., Miniard, P. W., & Engel, J. F. (2001). Consumer behavior 9th. South-Western Thomas Learning. Mason, OH, 1-13.

Bloch, P. H., Sherrell, D. L., & Ridgway, N. M. (1986). Consumer search: An extended framework. Journal of Consumer Research, 13(1), 119-126. DOI: https://doi.org/10.1086/209052

Brynjolfsson, E., & Mcafee, A. (2017). Artificial intelligence, for real. Harvard Business Review, 1, 1-31.

Chartrand, T. L. (2005). The role of conscious awareness in consumer behaviour. Journal of Consumer Psychology, 15(3), 203-210. DOI: https://doi.org/10.1207/s15327663jcp1503_4

Chen, H., Chan-Olmsted, S., Kim, J., & Sanabria, I. M. (2021). Consumers’ perception of artificial intelligence applications in marketing communication. Qualitative Market Research: An International Journal, 25(1), 125-142. DOI: https://doi.org/10.1108/QMR-03-2021-0040

Cherry, K. (2020). What Is Othering? Verywell Mind.

Cheung, M. F., & To, W. M. (2021). The effect of consumer perceptions of the ethics of retailers on purchase behaviour and word-of-mouth: The moderating role of ethical beliefs. Journal of Business Ethics, 171(4), 771-788. DOI: https://doi.org/10.1007/s10551-020-04431-6

Chin, W. W. (2009). How to write up and report PLS analyses. In Handbook of partial least squares: Concepts, methods and applications (pp. 655-690). Springer. DOI: https://doi.org/10.1007/978-3-540-32827-8_29

Chung, M., Ko, E., Joung, H., & Kim, S. J. (2020). Chatbot e-service and customer satisfaction regarding luxury brands. Journal of Business Research, 117, 587-595. DOI: https://doi.org/10.1016/j.jbusres.2018.10.004

Clark, L. A., & Watson, D. (2016). Constructing validity: Basic issues in objective scale development.

Clemons, E. K., Wilson, J., Matt, C., Hess, T., Ren, F., Jin, F., & Koh, N. S. (2016). Global differences in online shopping behavior: Understanding factors leading to trust. Journal of Management Information Systems, 33(4), 1117-1148. DOI: https://doi.org/10.1080/07421222.2016.1267531

Costa, B. R., & Ferreira, L. F. (2023). Cash conversion cycle across industries: Airlines versus fast-moving consumer goods industry. Accounting and Management Review| Revista de Contabilidade e Gestão, 27(1). DOI: https://doi.org/10.55486/amrrgg.v27i1.4

Dangi, A., Saini, C. P., Singh, V., & Hooda, J. (2021). Customer perception, purchase intention and buying decision for branded products: measuring the role of price discounts. Journal of Revenue and Pricing Management, 20(2), 194-203. DOI: https://doi.org/10.1057/s41272-021-00300-7

Davenport, T. H., & Ronanki, R. (2018). Artificial intelligence for the real world. Harvard Business Review, 96(1), 108-116.

Dias, T., Gonçalves, R., da Costa, R. L., Pereira, L. F., & Dias, Á. (2023). The impact of artificial intelligence on consumer behaviour and changes in business activity due to pandemic effects. Human Technology, 19(1), 121-148. DOI: https://doi.org/10.14254/1795-6889.2023.19-1.8

Dornyei, Z. (2007). Research methods in applied linguistics. Oxford University Press.

Edelman, D. C., & Abraham, M. (2022). Customer Experience in the Age of AI. Harvard Business Review, 100(3-4), 116-125.

Elarbah, L. A., & SHEBLİ, N. (2020). The relationship among country-of-origin, quality of the product and buying decision: A case study of the Turkish clothes on Libyan market. The International New Issues in Social Sciences, 8(1), 93-114.

Estes, D., & Bartsch, K. (2017). Theory of mind: A foundational component of human general intelligence. Behavioral and Brain Sciences, 40. DOI: https://doi.org/10.1017/S0140525X16001618

Franchin, L. (2023). Theory of Mind. In The Palgrave Encyclopedia of the Possible (pp. 1639-1644). Springer. DOI: https://doi.org/10.1007/978-3-030-90913-0_3

Gkikas, D. C., & Theodoridis, P. K. (2022). AI in Consumer Behavior. Advances in Artificial Intelligence-based Technologies: Selected Papers in Honour of Professor Nikolaos G. Bourbakis—Vol. 1, 147-176. DOI: https://doi.org/10.1007/978-3-030-80571-5_10

Gold, A. H., Malhotra, A., & Segars, A. H. (2001). Knowledge management: An organizational capabilities perspective. Journal of Management Information Systems, 18(1), 185-214. DOI: https://doi.org/10.1080/07421222.2001.11045669

Greeley, L. (2023). Consumer Education for Attaining Life Goals. Overcoming the Educational Resource Equity Gap: A Close Look at Distributing a School’s Financial and Human Resources, 157.

Hair, J. F., Celsi, M. W., Ortinau, D. J., & Bush, R. P. (2017). Essentials of marketing research. McGraw-Hill.

Hair Jr, J. F., Sarstedt, M., Hopkins, L., & Kuppelwieser, V. G. (2014). Partial least squares structural equation modelling (PLS-SEM): An emerging tool in business research. European Business Review, 26(2), 106-121. DOI: https://doi.org/10.1108/EBR-10-2013-0128

Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modelling. Journal of the academy of marketing science, 43, 115-135. DOI: https://doi.org/10.1007/s11747-014-0403-8

Hexian, Y. (2023). Impact of economic factors on consumer buying behaviour with the mediating role of consumer perception. Dinkum Journal of Economics and Managerial Innovations, 2(06), 359-370.

Holbrook, M. B. (1994). The nature of customer value: an axiology of services in the consumption experience. Service quality: New directions in theory and practice, 21-71. DOI: https://doi.org/10.4135/9781452229102.n2

Hopkins, K. D. (1982). The unit of analysis: Group means versus individual observations. American Educational Research Journal, 19(1), 5-18. DOI: https://doi.org/10.3102/00028312019001005

Huang, M.-H., & Rust, R. T. (2021). Engaged with a robot? The role of AI in service. Journal of Service Research, 24(1), 30-41. DOI: https://doi.org/10.1177/1094670520902266

Iglesias, V. (2004). Preconceptions about service: how much do they influence quality evaluations? Journal of Service Research, 7(1), 90-103. DOI: https://doi.org/10.1177/1094670504266139

Kim, H.-A., & Jung, H.-Y. (2018). A study of consumer perceptions of food safety and food buying behaviour. Culinary science and hospitality research, 24(3), 93-103. DOI: https://doi.org/10.20878/cshr.2018.24.3.009

Kim, T., Lee, H., Kim, M. Y., Kim, S., & Duhachek, A. (2022). AI increases unethical consumer behaviour due to reduced anticipatory guilt. Journal of the academy of marketing science, 51(4), 785-801. DOI: https://doi.org/10.1007/s11747-021-00832-9

Kock, N. (2015). Common method bias in PLS-SEM: A full collinearity assessment approach. International Journal of e-Collaboration (ijec), 11(4), 1-10. DOI: https://doi.org/10.4018/ijec.2015100101

Koenig-Lewis, N., Palmer, A., Dermody, J., & Urbye, A. (2014). Consumers' evaluations of ecological packaging–Rational and emotional approaches. Journal of Environmental Psychology, 37, 94-105. DOI: https://doi.org/10.1016/j.jenvp.2013.11.009

Kutabish, S., Soares, A. M., & Casais, B. (2023). The influence of online ratings and reviews in consumer buying behaviour: a systematic literature review. International Conference on Digital Economy, DOI: https://doi.org/10.1007/978-3-031-42788-6_8

Labadze, L., Grigolia, M., & Machaidze, L. (2023). Role of AI chatbots in education: systematic literature review. International Journal of Educational Technology in Higher Education, 20(1), 56. DOI: https://doi.org/10.1186/s41239-023-00426-1

Lee, H., Cho, C.-H., Lee, S.-Y., & Keel, Y.-H. (2019). A Study on Consumers' Perception of and Use Motivation of Artificial Intelligence (AI) Speaker. The Journal of the Korea Contents Association, 19(3), 138-154.

Lee, M., & Park, J. S. (2022). Do parasocial relationships and the quality of communication with AI shopping chatbots determine middle‐aged women consumers' continuance usage intentions? Journal of Consumer Behaviour, 21(4), 842-854. DOI: https://doi.org/10.1002/cb.2043

Lewis, E. F., Hardy, M., & Snaith, B. (2013). An analysis of survey reporting in the imaging professions: is the issue of non-response bias being adequately addressed? Radiography, 19(3), 240-245. DOI: https://doi.org/10.1016/j.radi.2013.02.003

Little, R. J. (1988). A test of missing completely at random for multivariate data with missing values. Journal of the American Statistical Association, 83(404), 1198-1202. DOI: https://doi.org/10.1080/01621459.1988.10478722

Luo, X., Tong, S., Fang, Z., & Qu, Z. (2019). Frontiers: Machines vs. humans: The impact of artificial intelligence chatbot disclosure on customer purchases. Marketing Science, 38(6), 937-947. DOI: https://doi.org/10.1287/mksc.2019.1192

Makridakis, S. (2017). The forthcoming Artificial Intelligence (AI) revolution: Its impact on society and firms. Futures, 90, 46-60. DOI: https://doi.org/10.1016/j.futures.2017.03.006

Martins-Junior, F. E., Sanvicente-Vieira, B., Grassi-Oliveira, R., & Brietzke, E. (2011). Social cognition and Theory of Mind: controversies and promises for understanding major psychiatric disorders. Psychology & Neuroscience, 4, 347-351. DOI: https://doi.org/10.3922/j.psns.2011.3.008

McCarthy, J. (1988). Mathematical logic in artificial intelligence. Daedalus, 297-311.

Meera, M. R., Mahalakshmi, R., & Padmaja, R. (2017). Consumer behaviour towards fmcg products: A study with special reference to Rajapalayam. Research Journal of Humanities and Social Sciences, 8(1), 69-80. DOI: https://doi.org/10.5958/2321-5828.2017.00011.0

Memon, M. A., Sallaeh, R., Baharom, M. N. R., Nordin, S. M., & Ting, H. (2017). The relationship between training satisfaction, organisational citizenship behaviour, and turnover intention: A PLS-SEM approach. Journal of Organizational Effectiveness: People and Performance, 4(3), 267-290. DOI: https://doi.org/10.1108/JOEPP-03-2017-0025

Minsky, H. P. (1985). Money and the lender of last resort. Challenge, 28(1), 12-18. DOI: https://doi.org/10.1080/05775132.01.11470984

Monkman, H., Kushniruk, A., Barnett, J., Borycki, E., Greiner, L., & Sheets, D. (2017). Are health literacy and eHealth literacy the same or different? Medinfo 2017: Precision healthcare through informatics–proceedings of the 16th World Congress of Medical and Health Informatics,

Nagy, S., & Hajdú, N. (2021). Consumer acceptance of the use of artificial intelligence in online shopping: Evidence from Hungary. Amfiteatru Economic, 23(56), 155-173. DOI: https://doi.org/10.24818/EA/2021/56/155

Newell, A., & Simon, H. A. (2007). Computer science as empirical inquiry: Symbols and search. In ACM Turing award lectures (pp. 1975). DOI: https://doi.org/10.1145/1283920.1283930

Nitzl, C., Roldan, J. L., & Cepeda, G. (2016). Mediation analysis in partial least squares path modelling: Helping researchers discuss more sophisticated models. Industrial management & data systems, 116(9), 1849-1864. DOI: https://doi.org/10.1108/IMDS-07-2015-0302

Olan, F., Suklan, J., Arakpogun, E. O., & Robson, A. (2021). Advancing consumer behaviour: The role of artificial intelligence technologies and knowledge sharing. IEEE Transactions on Engineering Management.

Otto, S., Strenger, M., Maier-Nöth, A., & Schmid, M. (2021). Food packaging and sustainability–Consumer perception vs. correlated scientific facts: A review. Journal of Cleaner Production, 298, 126733. DOI: https://doi.org/10.1016/j.jclepro.2021.126733

Pelau, C., Ene, I., & Pop, M.-I. (2021). The impact of artificial intelligence on CONSUMERS and human skills. Amfiteatru Economic, 23(56), 33-45. DOI: https://doi.org/10.24818/EA/2021/56/33

Podsakoff, P. M., MacKenzie, S. B., Lee, J.-Y., & Podsakoff, N. P. (2003). Common method biases in behavioural research: a critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879. DOI: https://doi.org/10.1037/0021-9010.88.5.879

Rathore, M. M., Shah, S. A., Shukla, D., Bentafat, E., & Bakiras, S. (2021). The role of AI, machine learning, and big data in digital twinning: A systematic literature review, challenges, and opportunities. IEEE Access, 9, 32030-32052. DOI: https://doi.org/10.1109/ACCESS.2021.3060863

Rathore, P., Saha, E., Chakraborty, S., & Tiwari, A. K. (2022). Assessing the impact of consumer perceived CSR on consumer attitude and purchase behaviour in the retail segment: a stakeholder theory perspective. Society and Business Review, 18(2), 264-295. DOI: https://doi.org/10.1108/SBR-10-2021-0207

Rezaei, S., Ali, F., Amin, M., & Jayashree, S. (2016). Online impulse buying of tourism products: The role of website personality, utilitarian and hedonic web browsing. Journal of Hospitality and Tourism Technology, 7(1), 60-83. DOI: https://doi.org/10.1108/JHTT-03-2015-0018

Rezaei, S., & Ghodsi, S. S. (2014). Does value matter in playing online games? An empirical study among massively multiplayer online role-playing games (MMORPGs). Computers in Human Behavior, 35, 252-266. DOI: https://doi.org/10.1016/j.chb.2014.03.002

Rodrigues, R. I., Lopes, P., & Varela, M. (2021). Factors affecting impulse buying behaviour of consumers. Frontiers in Psychology, 12, 697080. DOI: https://doi.org/10.3389/fpsyg.2021.697080

Rubin, D. B. (1987). Multiple imputation for survey nonresponse. In: New York: Wiley. DOI: https://doi.org/10.1002/9780470316696

Rundle‐Thiele, S., & Bennett, R. (2001). A brand for all seasons? A discussion of brand loyalty approaches and their applicability for different markets. Journal of Product & Brand Management, 10(1), 25-37. DOI: https://doi.org/10.1108/10610420110382803

Ryzhkova, M., Soboleva, E., Sazonova, A., & Chikov, M. (2020). Consumers’ perception of artificial intelligence in the banking sector. SHS web of conferences, DOI: https://doi.org/10.1051/shsconf/20208001019

Schafer, J. L., & Olsen, M. K. (1998). Multiple imputation for multivariate missing-data problems: A data analyst's perspective. Multivariate behavioural research, 33(4), 545-571. DOI: https://doi.org/10.1207/s15327906mbr3304_5

Schepman, A., & Rodway, P. (2020). Initial validation of the general attitudes towards the Artificial Intelligence Scale. Computers in human behavior reports, 1, 100014. DOI: https://doi.org/10.1016/j.chbr.2020.100014

Sethi, H., & Chaudhary, A. (2021). Consumer buying Behaviour and Preference towards FMCG. Parichay Maharaja Surajmal Institute Journal of Applied Research, 30.

Sundell, E., Wångdahl, J., & Grauman, Å. (2022). Health literacy and digital health information-seeking behaviour–a cross-sectional study among highly educated Swedes. BMC Public Health, 22(1), 2278. DOI: https://doi.org/10.1186/s12889-022-14751-z

Tao, H., Sun, X., Liu, X., Tian, J., & Zhang, D. (2022). The impact of consumer purchase behaviour changes on the business model design of consumer services companies throughout COVID-19. Frontiers in Psychology, 13, 818845. DOI: https://doi.org/10.3389/fpsyg.2022.818845

Tien, N. H., Ngoc, N. M., & Anh, D. B. H. (2021). Change of consumer behaviour in the post-COVID-19 period. Change, 2(1), 53.

Tulcanaza-Prieto, A. B., Cortez-Ordoñez, A., & Lee, C. W. (2023). Influence of Customer Perception Factors on AI-Enabled Customer Experience in the Ecuadorian Banking Environment. Sustainability, 15(16), 12441. DOI: https://doi.org/10.3390/su151612441

Vibhuti, A. K. T., & Pandey, V. (2014). A case study on consumer buying behaviour towards selected FMCG products. International Journal of scientific research and management, 2(8), 1168-1182.

Wang, S.-M., Huang, Y.-K., & Wang, C.-C. (2020). A model of consumer perception and behavioural intention for AI service. Proceedings of the 2020 2nd International Conference on Management Science and Industrial Engineering, DOI: https://doi.org/10.1145/3396743.3396791

Wei, S., Ang, T., & Jancenelle, V. E. (2018). Willingness to pay more for green products: The interplay of consumer characteristics and customer participation. Journal of Retailing and Consumer Services, 45, 230-238. DOI: https://doi.org/10.1016/j.jretconser.2018.08.015

Woodruff, R. B. (1997). Customer value: the next source of competitive advantage. Journal of the academy of marketing science, 25, 139-153. DOI: https://doi.org/10.1007/BF02894350

Yang, F., Tang, J., Men, J., & Zheng, X. (2021). Consumer perceived value and impulse buying behaviour on mobile commerce: The moderating effect of social influence. Journal of Retailing and Consumer Services, 63, 102683. DOI: https://doi.org/10.1016/j.jretconser.2021.102683

Zeithaml, V. A., Berry, L. L., & Parasuraman, A. (1996). The behavioural consequences of service quality. Journal of Marketing, 60(2), 31-46. DOI: https://doi.org/10.1177/002224299606000203

Zhang, K. Z., Xu, H., Zhao, S., & Yu, Y. (2018). Online reviews and impulse buying behaviour: the role of browsing and impulsiveness. Internet Research, 28(3), 522-543. DOI: https://doi.org/10.1108/IntR-12-2016-0377

Zhang, X., & Yu, X. (2020). The impact of perceived risk on consumers’ cross-platform buying behaviour. Frontiers in Psychology, 11, 592246. DOI: https://doi.org/10.3389/fpsyg.2020.592246

Zhang, Y., Hexian, W., & Li, Z. (2023). Impact of economic factors on consumer perception: a partial least square approach on the consumer buying behaviours. Dinkum Journal of Economics and Managerial Innovations, 2(03), 151-162.

Zhang, Y., & Wang, S. (2023). The influence of the anthropomorphic appearance of artificial intelligence products on consumer behaviour and brand evaluation under different product types. Journal of Retailing and Consumer Services, 74, 103432. DOI: https://doi.org/10.1016/j.jretconser.2023.103432

Downloads

Published

2024-06-01

Issue

Section

Articles

How to Cite

Farooq, M. W. ., Hassan, K. H. U. ., & Nawaz, F. . (2024). Integrating Qualitative and Quantitative Approaches: The Impact of AI Design on Consumer Perception and Buying Behavior in the FMCG Sector. Bulletin of Business and Economics (BBE), 13(2), 775-786. https://doi.org/10.61506/01.00393