A Research Challenging Vision Concerning Waste of Agricultural Management in a Bio-Based Circular Economy: A Review Article
DOI:
https://doi.org/10.61506/01.00271Keywords:
transdisciplinary lens, geographic scales, agricultural byproducts, Anaerobic DigestionAbstract
Agricultural waste represents an enormous reservoir of underutilized biomass resources, which may even pose environmental and economic risks. Residual resources of this nature can be transformed into bioenergy and bio-based products through cascading conversion processes, thereby fitting the criteria of a circular economy. Significant challenges are examined through a transdisciplinary lens, with an emphasis on the European context. Due to the seasonality, regionality, and complexity of agricultural residue management chains, environmental and economic repercussions are challenging to quantify. It is discussed how to develop multi-criteria decision support instruments that can be implemented in the earliest phases of research. The technological advancement of Anaerobic Digestion (AD), a highly developed conversion technology, is examined in the context of seasonal and geographical variations in refuse feedstock. Utilizing agricultural byproducts to manufacture high-value compounds is a significant challenge that is examined in this article, with innovative cascading conversion processes that are both eco-efficient and cost-effective (bio-refinery concept) taken into consideration. Furthermore, industrial ecology examines the promotion of businesses based on agricultural residues in order to foster local synergy between various industrial and agricultural value chains. In order to optimize the management of materials and knowledge fluxes and facilitate a holistic approach, the connection of stakeholders to encourage resource exchange and cross-sector collaboration at appropriate geographic scales is discussed.
References
Aeschelmann, F., Carus, M., Baltus, W., Carrez, D., Guzman, D., K€ab, H., … Ravenstijn, J. (2017). Bio-based building blocks and polymers: global capacities and trends 2016–2021. Nova Institute GmbH and Europeans Bioplastics Association. DOI: https://doi.org/10.52548/ICQK9651
Ahring, B. K., Biswas, R., Ahamed, A., Teller, P. J., & Uellendahl, H. (2015). Making lignin accessible for anaerobic digestion by wet-explosion pretreatment. Bioresource Technology, 175, 182–188. DOI: https://doi.org/10.1016/j.biortech.2014.10.082
Alizadeh, H., Teymouri, F., Gilbert, T. I., & Dale, B. E. (2005). Pretreatment of switchgrass by ammonia fiber explosion (AFEX). Applied Biochemistry and Biotechnology, 124(1–3), 1133–1134. DOI: https://doi.org/10.1385/ABAB:124:1-3:1133
Allied Market Research. (2014). Bio Succinic Acid Market by Application (1-Butanediol,4- Butanediol (BDO), Polyester Polyols, PBS, Plasticizers, Solvents & lubricants, Alkyd Resins, Resins, coatings, pigments, De-icer solutions): Global Opportunity Analysis and Industry Forecast, 2013–2020.
Al-Oqla, F., Sapuan, M. S., Ishak, M. R., & Aziz, N. A. (2014). Combined Multi-criteria evaluation stage technique as an agro waste evaluation indicator for polymeric compo- sites: date palm fibers as a case study. BioResources, 9(3), 4608–4621. DOI: https://doi.org/10.15376/biores.9.3.4608-4621
Andriani, D., Wresta, A., Atmaja, T. D., & Saepudin, A. (2014). A review on optimization production and upgrading biogas through CO2 removal using various techniques. Applied Biochemistry and Biotechnology, 172(4), 1909–1928. DOI: https://doi.org/10.1007/s12010-013-0652-x
Angelidaki, I., Treu, L., Tsapekos, P., Luo, G., Campanaro, S., Wenzel, H., & Kougias, P. G. (2018). Biogas upgrading and utilization: Current status and perspectives. Biotechnology Advances, 36(2), 452–466. DOI: https://doi.org/10.1016/j.biotechadv.2018.01.011
Aouf, C., Benyahya, S., Esnouf, A., Caillol, S., Boutevin, B., & Fulcrand, H. (2014). Tara tannins as phenolic precursors of thermosetting epoxy resins. European Polymer Journal, 55, 186–198. DOI: https://doi.org/10.1016/j.eurpolymj.2014.03.034
Avadi, A., Nitschelm, L., Corson, M., & Vert`es, F. (2016). Data strategy for environmental assessment of agricultural regions via LCA: Case study of a French catchment. The International Journal of Life Cycle Assessment, 21(4), 476–491. DOI: https://doi.org/10.1007/s11367-016-1036-6
Barakat, A., de Vries, H., & Rouau, X. (2013). Dry fractionation process as an important step in current and future lignocellulose biorefineries: a review. Bioresource Technology, 134, 362–373. DOI: https://doi.org/10.1016/j.biortech.2013.01.169
Battini, F., Agostini, A., Boulamanti, A. K., Giuntoli, J., & Amaducci, S. (2014). Mitigating the environmental impacts of milk production via anaerobic digestion of manure: Case study of a dairy farm in the Po Valley. The Science of the Total Environment, 481, 196–208. DOI: https://doi.org/10.1016/j.scitotenv.2014.02.038
Bellarby, J., Tirado, R., Leip, A., Weiss, F., Lesschen, J. P., & Smith, P. (2013). Livestock greenhouse gas emissions and mitigation potential in Europe. Global Change Biology, 19(1), 3–18. DOI: https://doi.org/10.1111/j.1365-2486.2012.02786.x
Berthet, M. A., Angellier-Coussy, H., Guillard, V., & Gontard, N. (2016). Vegetal fibre- based biocomposites: Which stakes for food packaging applications? Journal of Applied Polymer Science, 133(2). DOI: https://doi.org/10.1002/app.42528
Berthet, M. A., Coussy, H., Chea, V., Guillard, V., Gastaldi, E., & Gontard, N. (2015). Sustainable food packaging: Valorising wheat straw fibres for tuning PHBV-based com- posites properties. Composites Part A: Applied Science and Manufacturing, 72, 139–147. DOI: https://doi.org/10.1016/j.compositesa.2015.02.006
Berthet, M. A., Mayer-Laigle, C., Rouau, X., Gontard, N., & Angellier-Coussy, H. (2017). Sorting natural fibres: A way to better understand the role of fibre size polydispersity on the mechanical properties of biocomposites. Composites: Part A, 95, 12–21. DOI: https://doi.org/10.1016/j.compositesa.2017.01.011
Blasco-Go´mez, R., Batlle-Vilanova, P., Villano, M., Balaguer, M., Colprim, J., & Puig, S. (2017). On the edge of research and technological application: a critical review of elec- tromethanogenesis. International Journal of Molecular Sciences, 18(4), 874. DOI: https://doi.org/10.3390/ijms18040874
Bolzonella, D., Gottardo, M., Fatone, F., & Frison, N. (2017). Nutrients recovery from anaerobic digestate of agro-waste: techno-economic assessment of full scale applications. Journal of Environmental Management, 216, 111–119. DOI: https://doi.org/10.1016/j.jenvman.2017.08.026
Bolzonella, D., Battista, F., Cavinato, C., Gottardo, M., Micolucci, F., Lyberatos, G., & Pavan, P. (2018). Recent developments in biohythane production from household food wastes: A review. Bioresource Technology, 257, 311–319. DOI: https://doi.org/10.1016/j.biortech.2018.02.092
Buckwell, A., Heissenhuber, A., & Blum, W. (2014). The sustainable intensification of euro- pean agriculture. A Review Sponsored by the RISE Foundation.Budde, J., Prochnow, A., Plo€chl, M., Su´arez Quin~ones, T., & Heiermann, M. (2016). Energy balance, greenhouse gas emissions, and profitability of thermobarical pretreatment of cat- tle waste in anaerobic digestion. Waste Management, 49, 390–410. DOI: https://doi.org/10.1016/j.wasman.2015.12.003
Bugnicourt, E., Cinelli, P., Lazzeri, A., & Alvarez, V. (2014). Polyhydroxyalkanoate (PHA): Review of synthesis, characteristics, processing and potential applications in packaging. Express Polymer Letters, 8(11), 791–808. DOI: https://doi.org/10.3144/expresspolymlett.2014.82
Bundhoo, Z. M. A., & Mohee, R. (2018). Ultrasound-assisted biological conversion of bio- mass and waste materials to biofuels: A review. Ultrasonics - Sonochemistry, 40, 298–313. Carrere, H., Antonopoulou, G., Affes, R., Passos, F., Battimelli, A., Lyberatos, G., & Ferrer, I. (2016). Review of feedstock pretreatment strategies for improved anaerobic digestion: From lab-scale research to full-scale application. Bioresource Technology, 199, 386–397. DOI: https://doi.org/10.1016/j.biortech.2015.09.007
Carvalho, G., Oehmen, A., Albuquerque, M. G. E., & Reis, M. A. M. (2014). The relation- ship between mixed microbial culture composition and PHA production performance from fermented molasses. New Biotechnology, 31(4), 257–263. DOI: https://doi.org/10.1016/j.nbt.2013.08.010
Cavinato, C., Da Ros, C., Pavan, P., & Bolzonella, D. (2017). Influence of temperature and hydraulic retention on the production of volatile fatty acids during anaerobic fermenta- tion of cow manure and maize silage. Bioresource Technology, 223, 59–64. DOI: https://doi.org/10.1016/j.biortech.2016.10.041
Chae, Y., & An, Y. J. (2017). Effects of micro- and nanoplastics on aquatic ecosystems: Current research trends and perspectives. Marine Pollution Bulletin, 124(2), 624–632. DOI: https://doi.org/10.1016/j.marpolbul.2017.01.070
Chen, G. Q. (2009). A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chemical Society Reviews, 38(8), 2434. DOI: https://doi.org/10.1039/b812677c
Chen, G. Q. (2010). Industrial production of PHA. In G. Q. Chen, (Ed.), Plastics from bac- teria. microbiology monographs (vol. 14). Heidelberg, Germany: Springer. DOI: https://doi.org/10.1007/978-3-642-03287-5_6
Choi, J., & Lee, S. Y. (1999). Factors affecting the economics of polyhydroxyalkaonoate pro- duction by bacterial fermentation. Applied Microbiology and Biotechnology, 51(1), 13–21. DOI: https://doi.org/10.1007/s002530051357
Corona, A., Parajuli, R., Ambye-Jensen, M., Hauschild, M. Z., & Birkved, M. (2018). Environmental screening of potential biomass for green biorefinery conversion. Journal of Cleaner Production, 189, 344–357. DOI: https://doi.org/10.1016/j.jclepro.2018.03.316
Costa, R., Saraiva, A., Carvalho, L., & Duarte, E. (2014). The use of biodegradable mulch films on strawberry crop in Portugal. Scientia Horticulturae, 173, 65–70. DOI: https://doi.org/10.1016/j.scienta.2014.04.020
Croxatto Vega, G. C., Hoeve, M., Birkved, M., Sommer, S. G., & Bruun, S. (2014). Choosing co-substrates to supplement biogas production from animal slurry: A life cycle assessment of the environmental consequences. Bioresource Technology, 171, 410–420. DOI: https://doi.org/10.1016/j.biortech.2014.08.099
Deepa, A. K., & Dhepe, P. L. (2015). Lignin depolymerization into aromatic monomers over solid acid catalysts. ACS Catalysis, 5(1), 365–379. DOI: https://doi.org/10.1021/cs501371q
Doman´ski, J., Marchut-Mikołajczyk, O., Polewczyk, A., & Januszewicz, B. (2017). Ozonolysis of straw from Secale cereale L. for anaerobic digestion. Bioresource Technology, 245, 394–400. DOI: https://doi.org/10.1016/j.biortech.2017.08.090
Dugmore, T. I. J., Clark, J. H., Bustamante, J., Houghton, J. A., & Matharu, A. S. (2017). Valorisation of biowastes for the production of green materials using chemical methods. Topics in Current Chemistry, 375(2), 46. DOI: https://doi.org/10.1007/s41061-017-0133-8
Dumas, C., Silva, G., Damasceno, G., Barakat, A., Carr`ere, H., Steyer, J. P., & Rouau, X. (2015). Effects of grinding processes on anaerobic digestion of wheat straw. Industrial Crops and Products, 74, 450–445. DOI: https://doi.org/10.1016/j.indcrop.2015.03.043
Durham, E., Baker, H., Smith, M., Moore, E., & Morgan, V. (2014). The BiodivERsA stake- holder engagement handbook. Paris: BiodivERsA .
EBA. (2018). Statistical Report of the European Biogas Association (EBA). 7th edition.
EEC. (1991). Council Directive 91/676/EEC of 12 December 1991 concerning the protec- tion of waters against pollution caused by nitrates from agricultural sources. Official Journal of the European Communities, No. L 375/1, 31.12.1991.
Eerhart, A. J. J. E., Faaij, A. P. C., & Patel, M. K. (2012). Replacing fossil based PET with biobased PEF; process analysis, energy and GHG balance. Energy & Environmental Science, 5(4, 6407. DOI: https://doi.org/10.1039/c2ee02480b
Elbersen, B., Startisky, I., Hengeveld, G., Schelhaas, M. J., & Naeff, H. (2012). Atlas of EU biomass potentials. Biomass Futures Project Project Deliverable 3.3.
European Commission. (2007a). Directive 2007/2/EC of the European Parliament and of the Council of 14 March 2007 establishing an Infrastructure for Spatial Information in the European Community (INSPIRE). Official Journal of the European Union, No. L108/125.4.2007.
European Commission. (2007b). Council Regulation (EC) No 834/2007 of 28 June 2007 on organic production and labelling of organic products and repealing Regulation (EEC) No 2092/91.Official Journal of the European Union, 189 20.7.2007, 1.
European Commission (2008). Commission Regulation (EC) No 889/2008 of 5 September 2008 laying down detailed rules for the implementation of Council Regulation (EC) No 834/2007 on organic production and labelling of organic products with regard to organic production, labelling and control. Official Journal of the European Union, No. L 250/ 118.9.2008.
European Commission. (2018). European Commission Renewable Energy National Action Plans.
European Union. (2013). Regulation (EU) N◦ 1305/2013 of the European Parliament and of the Council of 17 December 2013 on support for rural development by the European Agricultural Fund for Rural Development (EAFRD) and repealing Council Regulation (EC) No. 1698/2005. Official Journal of the European Union, No. L 347/487, 2012. 2013.
Eurostat. (2015). Consumption of inorganic fertilizers.
Fabbri, D., & Torri, C. (2016). Linking pyrolysis and anaerobic digestion (Py-AD) for the conversion of lignocellulosic biomass. Current Opinion in Biotechnology, 38, 167–173. DOI: https://doi.org/10.1016/j.copbio.2016.02.004
FAO (2011). “Energy-smart” food for people and climate. Issue Paper. Food and Agriculture Organization of the United Nations.
FAO. (2014). AQUASTAT Website.
Fava, F., Totaro, G., Diels, L., Reis, M., Duarte, J., Beserra Carioca, O., … Sommer Ferreira, B. (2015). Biowaste biorefinery in Europe: opportunities and research & development needs. New Biotechnology, 32(1), 100–108. DOI: https://doi.org/10.1016/j.nbt.2013.11.003
Feng, Q., & Lin, Y. (2017). Integrated processes of anaerobic digestion and pyrolysis for higher bioenergy recovery from lignocellulosic biomass: A brief review. Renewable and Sustainable Energy Reviews, 77, 1272–1287. DOI: https://doi.org/10.1016/j.rser.2017.03.022
Fiorentino, G., Ripa, M., & Ulgiati, S. (2017). Chemicals from biomass: technological versus environmental feasibility: A review. Biofuels, Bioproducts and Biorefining, 11(1), 195–214. DOI: https://doi.org/10.1002/bbb.1729
Foged, H. L., Flotats, X., Blasi, A. B., Palatsi, J., Magri, A., & Schelde, K. M. (2011). Inventory of manure processing activities in Europe. Technical Report No. I concerning “Manure Processing Activities in Europe” to the European Commission, Directorate General Environment; 138p.
FPA (2017). U.S. flexible packaging: State of the industry report 2017. Flexible Packaging Association.
Fradinho, J. C., Oehmen, A., & Reis, M. A. M. (2014). Photosynthetic mixed culture poly- hydroxyalkanoate (PHA) production from individual and mixed volatile fatty acids (VFAs): Substrate preferences and co-substrate uptake. Journal of Biotechnology, 185, 19–27.Fritsch, C., Staebler, A., Happel, A., Cubero-M´arquez, M. A., Aguilo´-Aguayo, I., Abadias, M., … Belotti, G. (2017). Processing, valorization and application of bio-waste derived compounds from potato, tomato, olive and cereals: A review. Sustainability, 9(8), 1492. DOI: https://doi.org/10.1016/j.jbiotec.2014.05.035
Frosch, D., & Gallopoulos, N. (1989). Strategies for manufacturing. Scientific American, 261(3), 144–102. DOI: https://doi.org/10.1038/scientificamerican0989-144
Galloway, T. S. (2015). Micro- and nano-plastics and Human Health. In M. Bergmann, L. Gutow, & M. Klages, (Eds.), Marine anthropogenic litter. New York: Springer International Publishing. DOI: https://doi.org/10.1007/978-3-319-16510-3_13
Gioia, C., Banella, M. B., Marchese, P., Vannini, M., Colonna, M., & Celli, A. (2016). Advances in the synthesis of bio-based aromatic polyesters: novel copolymers derived from vanillic acid and e-caprolactone. Polymer Chemistry, 7(34), 5396–5406. DOI: https://doi.org/10.1039/C6PY00908E
Goldstein, B., Birkved, M., Quitzau, M. B., & Hauschild, M. (2013). Quantification of urban metabolism through coupling with the life cycle assessment framework: concept development and case study. Environmental Research Letters, 8(3), 035024. DOI: https://doi.org/10.1088/1748-9326/8/3/035024
Grand View Research. (2016). Polyphenols market analysis by product (Grape seed, green tea, apple), By application (Functional food, functional beverages, dietary supplements) and segment forecasts to 2024. Market research report.
Harmsen, P. F. H., Hackmann, M. M., & Bos, H. L. (2014). Green building blocks for bio- based plastics. Biofuels, Bioproducts and Biorefining, 8(3), 306–324. DOI: https://doi.org/10.1002/bbb.1468
Hendriks, A. T. W. M., & Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 100(1), 10–18. DOI: https://doi.org/10.1016/j.biortech.2008.05.027
Hilliou, L., Machado, D., Oliveira, C. S. S., Gouveia, A. R., Reis, M. A. M., Campanari, S., … Majone, M. (2016). Impact of fermentation residues on the thermal, structural, and rheological properties of polyhydroxy(butyrate-co-valerate) produced from cheese whey and olive oil mill wastewater. Journal of Applied Polymer Science, 133(2), 42818. DOI: https://doi.org/10.1002/app.42818
Hilliou, L., Teixeira, P. F., Machado, D., Covas, J. A., Oliveira, C. S. S., Duque, A. F., & Reis, M. A. M. (2016). Effects of fermentation residues on the melt processability and thermomechanical degradation of PHBV produced from cheese whey using mixed microbial cultures. Polymer Degradation and Stability, 128, 269–277. DOI: https://doi.org/10.1016/j.polymdegradstab.2016.03.031
Hospido, A., Davis, J., Berlin, J., & Sonesson, U. (2010). A review of methodological issues affecting LCA of novel food products. The International Journal of Life Cycle Assessment, 15(1), 44–52. DOI: https://doi.org/10.1007/s11367-009-0130-4
Hu€bner, T., & Mumme, J. (2015). Integration of pyrolysis and anaerobic digestion: Use of
aqueous liquor from digestate pyrolysis for biogas production. Bioresource Technology, 183, 86–92.
Hurni, H., Giger, M., Liniger, H., Studer, R. M., Messerli, P., Portner, B., … Breu, T. (2015). Soils, agriculture and food security: the interplay between ecosystem functioning and human well-being. Current Opinion in Environmental Sustainability, 15, 25–34. DOI: https://doi.org/10.1016/j.cosust.2015.07.009
Ipsen, K., L., Zimmermann, R., K., Nielsen, P., S., & Birkved, M. (2018). Environmental assessment of Smart City Solutions using a coupled urban metabolism—life cycle impact assessment approach. International Journal of Life Cycle Assessment. DOI: https://doi.org/10.1007/s11367-018-1453-9
ISO 14040. (2006). ISO 14040:2006 Environmental management-Life cycle assessment: Principles and framework.
Jang, Y. S., Kim, B., Shin, J. H., Choi, Y. J., Choi, S., Song, C. W., … Lee, S. Y. (2012). Bio-
Based Production of C2–C6 platform chemicals. Biotechnology and Bioengineering, 109(10), 2437–2459. DOI: https://doi.org/10.1002/bit.24599
Josimovic, B., Maric, I., & Milijic, S. (2015). Multi-criteria evaluation in strategic environ- mental assessment for waste management plan: a case study. Waste Management Journal, 36, 331–342. DOI: https://doi.org/10.1016/j.wasman.2014.11.003
Kennedy, C., Cuddihy, J., & Engel-Yan, J. (2007). The changing metabolism of cities. Journal of Industrial Ecology, 11(2), 43–59. DOI: https://doi.org/10.1162/jie.2007.1107
Khan, I. U., Othman, M. H. D., Hashim, H., Matsuura, T., Ismail, A. F., Rezaei- DashtArzhandi, M., & Wan Azelee, I. (2017). Biogas as a renewable energy fuel: A review of biogas upgrading, utilisation and storage. Energy Conversion and Management, 150, 277–294. DOI: https://doi.org/10.1016/j.enconman.2017.08.035
Kim, B. S. (2000). Production of poly(3-hydroxybutyrate) from inexpensive substrates. Enzyme Microb. Technol, 27(10), 774–777. DOI: https://doi.org/10.1016/S0141-0229(00)00299-4
Kiran, E. U., Trzcinski, A. P., & Liu, Y. (2015). Platform chemical production from food wastes using a biorefinery concept. Journal of Chemical Technology & Biotechnology, 90(8), 1364–1379. DOI: https://doi.org/10.1002/jctb.4551
Kirschweng, B., T´atraaljai, D., F€oldes, E., & Puk´anszky, B. (2017). Natural antioxidants as stabilizers for polymers. Polymer Degradation and Stability, 145, 25–40. DOI: https://doi.org/10.1016/j.polymdegradstab.2017.07.012
Kourmentza, C., Pl´acido, J., Venetsaneas, N., Burniol-Figols, A., Varrone, C., Gavala, H. N., & Reis, M. A. M. (2017). Recent advances and challenges towards sustainable polyhy- droxyalkanoate (PHA) production. Bioengineering, 4(4), 55. DOI: https://doi.org/10.3390/bioengineering4020055
Lammi, S., Barakat, A., Mayer-Laigle, C., Djenane, D., Gontard, N., & Angellier-Coussy, H. (2018). Dry fractionation as a sustainable process to produce fillers from olive pomace for biocomposites. Powder Technology, 326, 44–53. DOI: https://doi.org/10.1016/j.powtec.2017.11.060
Laurent, A., Olsen, S. I., & Hauschild, M. Z. (2010). Carbon footprint as environmental performance indicator for the manufacturing industry. CIRP Annals – Manufacturing Technology, 59(1), 37–40. DOI: https://doi.org/10.1016/j.cirp.2010.03.008
Lin, C. S. K., Luque, R., Clark, J. H., Webb, C., & Du, C. (2012). Wheat-based biorefining strategy for fermentative production and chemical transformations of succinic acid. Biofuels, Bioproducts and Biorefining, 6(1), 88–104. DOI: https://doi.org/10.1002/bbb.328
Lin, C. S. K., Pfaltzgraff, L. A., Herrero-Davila, L., Mubofu, E. B., Abderrahim, S., Clark, J. H., … Luque, R. (2013). Food waste as a valuable resource for the production of chem- icals, materials and fuels. Current situation and global perspective. Energy and Energy & Environmental Science, 6(2), 426–464. DOI: https://doi.org/10.1039/c2ee23440h
Loiseau, E., Roux, P., Junqua, G., Maurel, P., & Bellon-Maurel, V. (2013). Adapting the LCA framework to environmental assessment in land planning. The International Journal of Life Cycle Assessment, 18(8), 1533–1548. DOI: https://doi.org/10.1007/s11367-013-0588-y
Loiseau, E., Aissani, L., Le F´eon, S., Laurent, F., Cerceau, J., Sala, S., & Roux, P. (2018). Territorial Life Cycle Assessment (LCA): What exactly is it about? A proposal towards using a common terminology and a research agenda. Journal of Cleaner Production, 176, 474–485. DOI: https://doi.org/10.1016/j.jclepro.2017.12.169
Lowe, E. A., Moren, S. R., & Holmes, D. B. (1996). Fieldbook for the Development of Eco- Industrial Parks. Final Report. U.S. Environmental Protection Agency.
Markets and Markets. (2015). Antimicrobial Plastic Market by Type (Commodity Plastic, Engineering Plastic, and High Performance Plastic) by Application (Healthcare, Packaging, Consumer Goods, Automotive, Construction, and Others) & by Region: Global Forecast to 2020.
Massard, G., Jacquat, O., & Zu€rcher, D. (2014). International survey on ecoinnovation parks. Learning from experiences on the spatial dimension of eco-innovation. Federal Office for the Environment (FOEN) and the ERANET ECO-INNOVERA, Bern. Environmental studies no. 1402; 310p.
Mazzi, A., Toniolo, S., Catto, S., De Lorenzi, V., & Scipioni, A. (2017). The combination of an environmental management system and life cycle assessment at the territorial level. Environmental Impact Assessment Review, 63, 59–71. DOI: https://doi.org/10.1016/j.eiar.2016.11.004
Merlin, G., & Boileau, H. (2013). Anaerobic digestion of agricultural waste: state of the art and future trends. In A. Torres, (Ed.), Anaerobic digestion: types, processes and environ- mental impact. New York: Nova Science Publishers, Inc.
Mialon, L., Pemba, A. G., & Miller, S. A. (2010). Biorenewable polyethylene terephthalate mimics derived from lignin and acetic acid. Green Chemistry, 12(10), 1704–1706. DOI: https://doi.org/10.1039/c0gc00150c
Michałowicz, J. (2014). Bisphenol A-sources, toxicity and biotransformation. Environmental Toxicology and Pharmacology, 37(2), 738–758. DOI: https://doi.org/10.1016/j.etap.2014.02.003
Micolucci, F., Gottardo, M., Bolzonella, D., & Pavan, P. (2014). Automatic process control for stable bio-hythane production in two-phase thermophilic anaerobic digestion of food waste. International Journal of Hydrogen Energy, 39(31), 17563–17572. DOI: https://doi.org/10.1016/j.ijhydene.2014.08.136
Mo€ller, J., Boldrin, A., & Christensen, T. H. (2009). Anaerobic digestion and digestate use: Accounting of greenhouse gases and global warming contribution. Waste Management & Research, 27(8), 813–824. DOI: https://doi.org/10.1177/0734242X09344876
Mo€ller, K. (2015). Effects of anaerobic digestion on soil carbon and nitrogen turnover, N emissions, and soil biological activity. A review. Agronomy for Sustainable Development, 35(3), 1021–1041. DOI: https://doi.org/10.1007/s13593-015-0284-3
Mo€ller, K., & Mu€ller, T. (2012). Effects of anaerobic digestion on digestate nutrient availability and crop growth: A review. Engineering in Life Sciences, 12(3), 242–257. DOI: https://doi.org/10.1002/elsc.201100085
Monlau, F., Barakat, A., Trably, E., Dumas, C., Steyer, J., & Carr`ere, H. (2013). Lignocellulosic materials into biohydrogen and biomethane: Impact of structural features and pretreatment. Critical Reviews in Environmental Science and Technology, 43(3), 260–322. DOI: https://doi.org/10.1080/10643389.2011.604258
Monlau, F., Sambusiti, C., Antoniou, N., Barakat, A., & Zabaniotou, A. (2015). A new con- cept for enhancing energy recovery from agricultural residues by coupling anaerobic digestion and pyrolysis process. Applied Energy, 148, 32–38. DOI: https://doi.org/10.1016/j.apenergy.2015.03.024
Njakou Djomo, S., Witters, N., Van Dael, M., Gabrielle, B., & Ceulemans, R. (2015). Impact of feedstock, land use change, and soil organic carbon on energy and greenhouse gas performance of biomass cogeneration technologies. Applied Energy, 154, 122–130. DOI: https://doi.org/10.1016/j.apenergy.2015.04.097
Totaro, G., Sisti, L., Vannini, M., Marchese, P., Tassoni, A., Lenucci, M. S., … Celli, A. (2018). A new route of valorization of rice endosperm by-product: Production of poly- meric biocomposites. Composites Part B: Engineering, 139, 195–202. DOI: https://doi.org/10.1016/j.compositesb.2017.11.055
UNEP. (2011). Towards a Green Economy: Pathways to Sustainable Development and Poverty Eradication.
van Es, D. S. (2013). Rigid biobased building blocks. Journal of Renewable Materials, 1(1), 61–72. DOI: https://doi.org/10.7569/JRM.2012.634108
Vaswani, S. (2010). P. E. P., & Review, 20101. Bio-Based Succinic Acid. SRI Consulting.
Villano, M., Scardala, S., Aulenta, F., & Majone, M. (2013). Carbon and nitrogen removal and enhanced methane production in a microbial electrolysis cell. Bioresource Technology, 130, 366–371. DOI: https://doi.org/10.1016/j.biortech.2012.11.080
Wang, X., Li, Z., Zhou, X., Wang, Q., Wu, Y., Saino, M., & Bai, X. (2016). Study on the bio-methane yield and microbial community structure in enzyme enhanced anaerobic co-digestion of cow manure and corn straw. Bioresource Technology, 219, 150–157. DOI: https://doi.org/10.1016/j.biortech.2016.07.116
Weastra. (2013). Determination of market potential for selected platform chemicals: Itaconic acid, Succinic acid, 2,5-Furandicarboxylic acid. WP8.1 FP7 BioConSept Project.
Weiss, F., & Leip, A. (2012). Greenhouse gas emissions from the EU livestock sector: a life cycle assessment carried out with the CAPRI model. Agriculture, Ecosystems and Environment, 149, 124–134. DOI: https://doi.org/10.1016/j.agee.2011.12.015
White, J. F., Werpy, T., & Holladay, J. E. (2004). Top Value Added Chemicals from Biomass: Results of screening for potential candidates from sugars and synthesis gas, Volume 1. U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy.
Wolman, A. (1965). The metabolism of cities. Scientific American, 213, 179–190. DOI: https://doi.org/10.1038/scientificamerican0965-178
Xu, H., Wang, K., & Holmes, D. E. (2014). Bioelectrochemical removal of carbon dioxide (CO2): An innovative method for biogas upgrading. Bioresource Technology, 173, 392–398. DOI: https://doi.org/10.1016/j.biortech.2014.09.127